银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响

施琴 朱和军

施琴, 朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响[J]. 粉末冶金技术, 2020, 38(4): 257-261, 274. doi: 10.19591/j.cnki.cn11-1974/tf.2020020002
引用本文: 施琴, 朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响[J]. 粉末冶金技术, 2020, 38(4): 257-261, 274. doi: 10.19591/j.cnki.cn11-1974/tf.2020020002
SHI Qin, ZHU He-jun. Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil[J]. Powder Metallurgy Technology, 2020, 38(4): 257-261, 274. doi: 10.19591/j.cnki.cn11-1974/tf.2020020002
Citation: SHI Qin, ZHU He-jun. Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil[J]. Powder Metallurgy Technology, 2020, 38(4): 257-261, 274. doi: 10.19591/j.cnki.cn11-1974/tf.2020020002

银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020020002
详细信息
    通讯作者:

    施琴, E-mail: 29070162@qq.com

  • 中图分类号: TG174.44

Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil

More Information
  • 摘要: 通过化学还原合成了银包覆石墨烯(Ag/RGO)复合添加剂, 利用X射线衍射仪和扫描电镜分析了样品相成分和微观形貌, 采用UMT-2摩擦磨损试验机测定了Ag/RGO复合润滑油添加剂的摩擦性能。结果表明: 纳米银颗粒均匀分布在石墨烯片上, 银颗粒的粒径大约200nm。在摩擦磨损试验过程中, 摩擦副与磨损表面的凹凸点直接接触, 纯润滑油的润滑作用较差; 在润滑油中添加Ag/RGO复合添加剂, 在摩擦初始过程中, 摩擦副与磨损表面也是凹凸点直接接触, 随着磨损时间的增加, Ag/RGO复合添加剂在摩擦副与磨损表面之间形成一层润滑膜, 阻隔摩擦副与磨损表面直接接触, 产生边界润滑; 另外, 部分纳米银颗粒可起到微轴承作用, 使得改性后的润滑油润滑性能更好。
  • 图  1  银包覆石墨烯(Ag/RGO)纳米复合材料的合成机理图

    Figure  1.  Synthetic mechanism of the Ag-coated graphene(Ag/RGO)nanocomposites

    图  2  RGO、Ag及Ag/RGO的X射线衍射图谱

    Figure  2.  XRD diffraction patterns of RGO, Ag, and Ag/RGO

    图  3  Ag/RGO显微形貌((a)和(b))和能谱分析(c)

    Figure  3.  SEM images((a)and(b))and EDS analysis(c)of Ag/RGO

    图  4  纯液体石蜡油以及添加RGO和Ag/RGO的液体石蜡油在不同载荷下摩擦系数

    Figure  4.  Friction coefficients of the liquid paraffin oil without and with the RGO and Ag/RGO additives under the different loads

    图  5  纯液体石蜡油,RGO以及Ag/RGO做添加剂的液体石蜡油在2 N载荷下摩擦系数图

    Figure  5.  Friction coefficients of the liquid paraffin oil without and with the RGO and Ag/RGO additives at the 2 N load

    图  6  纯液体石蜡油(a)以及添加RGO(b)和Ag/RGO(c)的液体石蜡油在2 N载荷下磨痕

    Figure  6.  Wear scratches of the liquid paraffin oil without(a)and with RGO(b)and Ag/RGO(c)additives at the 2 Nload

    图  7  纯液体石蜡油(a)和添加Ag/RGO复合粉末液体石蜡油(b)作用下的摩擦副表面

    Figure  7.  Surface morphologies of the counterparts using the pure liquid paraffin oil without(a)and with(b)the Ag/RGO additives

  • [1] Mao H Y, Lu Y H, Lin J D, et al. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci, 2013, 88(2): 132 doi: 10.1016/j.progsurf.2013.02.001
    [2] Park S, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of Co3O4/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta, 2013, 89: 516 doi: 10.1016/j.electacta.2012.11.075
    [3] Gong Z Q, Wang C M, Cui H Z, et al. Effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings by laser cladding. Powder Metall Technol, 2019, 37(5): 323 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201905001.htm

    巩正奇, 王灿明, 崔洪芝, 等. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术, 2019, 37(5): 323 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201905001.htm
    [4] Shi Q, Tang H, Zhu H, et al. Synthesis and tribological properties of Ti-Doped NbSe2 nanoparticles. Chalcogenide Lett, 2014, 11(5): 199
    [5] Shi Q, Yang J, Peng W X, et al. Synergetic effect of NbSe2 and Cr2Nb on the tribological and electrical behavior of Cu-based electrical contact composites. Rsc Adv, 2015, 5(122): 100472 doi: 10.1039/C5RA17786C
    [6] Jia Z F, Chen T D, Wang J, et al. Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites. Tribol Int, 2015, 88: 17 doi: 10.1016/j.triboint.2015.02.028
    [7] Zhao J X, Ren C L, Shi X L. Experimental study on the application of graphene nano-powders in solar energy heat collection system. Powder Metall Ind, 2019, 29(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201902016.htm

    赵金秀, 任春立, 史新立. 石墨烯纳米粉末在太阳能集热系统中应用的试验研究. 粉末冶金工业, 2019, 29(2): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201902016.htm
    [8] Wang L J. Preparation and mechanical properties of titanium matrix composites reinforced by graphene with Cu-coated for engines. Powder Metall Ind, 2019, 2018, 28(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201803018.htm

    王丽君. 发动机用石墨烯表面镀Cu增强钛基复合材料的制备及力学性能. 粉末冶金工业, 2018, 28(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201803018.htm
    [9] Zhang Y, Tang H, Ji X R, et al. Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties. RSC Adv, 2013, 3(48): 26086 doi: 10.1039/c3ra42478b
    [10] Yao J, Shi X L, Zhai W Z, et al. Effect of TiB2 on tribological properties of TiAl self-lubricating composites containing Ag at elevated temperature. J Mater Eng Perform, 2015, 24(1): 307 doi: 10.1007/s11665-014-1275-2
    [11] Jin K J, Qiao Z H, Zhu S Y, et al. Tribological properties of bronze-Cr-Ag alloy in seawater, NaCl solution and deionized water. Tribol Int, 2016, 98: 1 doi: 10.1016/j.triboint.2016.02.018
    [12] Yang K, Shi X L, Huang Y C, et al. The research on the sliding friction and wear behaviors of TiAl-10wt% Ag at elevated temperatures. Mater Chem Phys, 2017, 186: 317 doi: 10.1016/j.matchemphys.2016.11.002
    [13] Shi Q. Research on Electrical Contact Composites Containing Transition Metal Selenides[Dissertation]. Zhenjiang: Jiangsu University, 2017

    施琴. 过渡族金属硒化物电接触复合材料的研究[学位论文]. 镇江: 江苏大学, 2017
    [14] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80(6): 1339 doi: 10.1021/ja01539a017
    [15] Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201805008.htm

    魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201805008.htm
    [16] Yuan M, Zhu H J, Peng H H, et al. Synthesis and tribological properties of ferrous based composites containing TiSe2 particles. Powder Metall Technol, 2016, 34(2): 106 doi: 10.3969/j.issn.1001-3784.2016.02.005

    袁梦, 朱和军, 彭红红, 等. 含纳米TiSe2的铁基复合材料的制备及摩擦学性能研究. 粉末冶金技术, 2016, 34(2): 106 doi: 10.3969/j.issn.1001-3784.2016.02.005
    [17] Xiong X, Chen J, Yao P P, et al. Effect of MoS2 on the sintering behaviors and mechanical properties of iron-based friction materials. Powder Metall Technol, 2006, 24(3): 182 doi: 10.3321/j.issn:1001-3784.2006.03.005

    熊翔, 陈洁, 姚屏萍, 等. MoS2对铁基摩擦材料烧结行为及力学性能的影响. 粉末冶金技术, 2006, 24(3): 182 doi: 10.3321/j.issn:1001-3784.2006.03.005
  • 加载中
图(7)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  131
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 刊出日期:  2020-08-27

目录

    /

    返回文章
    返回