基于表面改性的非均匀结构硬质合金研究进展

陈健 刘炳耀 邓欣 伍尚华 刘金洋

陈健, 刘炳耀, 邓欣, 伍尚华, 刘金洋. 基于表面改性的非均匀结构硬质合金研究进展[J]. 粉末冶金技术, 2022, 40(1): 60-66. doi: 10.19591/j.cnki.cn11-1974/tf.2020020003
引用本文: 陈健, 刘炳耀, 邓欣, 伍尚华, 刘金洋. 基于表面改性的非均匀结构硬质合金研究进展[J]. 粉末冶金技术, 2022, 40(1): 60-66. doi: 10.19591/j.cnki.cn11-1974/tf.2020020003
CHEN Jian, LIU Bing-yao, DENG Xin, WU Shang-hua, Liu jin-yang. Research progress of inhomogeneous structure cemented carbide based on surface modification[J]. Powder Metallurgy Technology, 2022, 40(1): 60-66. doi: 10.19591/j.cnki.cn11-1974/tf.2020020003
Citation: CHEN Jian, LIU Bing-yao, DENG Xin, WU Shang-hua, Liu jin-yang. Research progress of inhomogeneous structure cemented carbide based on surface modification[J]. Powder Metallurgy Technology, 2022, 40(1): 60-66. doi: 10.19591/j.cnki.cn11-1974/tf.2020020003

基于表面改性的非均匀结构硬质合金研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020020003
基金项目: 广州市科技计划项目(202002030259);广东省普通高校青年创新人才类项目(2018KQNCX141);广东省重大科技专项计划资助项目(2016B090914001);广东省科技计划资助项目(2017B090913006,2016A010102019);广东省普通高校基础研究与应用基础研究重点项目(2018KZDXM043)
详细信息
    通讯作者:

    E-mail: jinyangliu2022@163.com

  • 中图分类号: TF125.3;TG135.5

Research progress of inhomogeneous structure cemented carbide based on surface modification

More Information
  • 摘要: 表面改性是使材料表面获得与其基体不同微观组织的处理技术,能够有效调控材料表面的力学性能。因此,将表面改性方法应用于改善硬质合金表面的微观组织,能够有效避免均匀结构硬质合金显微结构–宏观性能的局限性,为制备高性能非均匀结构硬质合金提供技术方案。由于硬质合金表面改性研究的起步较晚且表面改性方法较多,表面改性方法的选取及其改性机理依然面临思路不清的问题。本文总结了化学表面改性梯度硬质合金的材料体系、制备机理、微观结构及力学性能,概括了物理表面改性得到的硬质合金涂层方法与功能,综述了表面改性在硬质合金领域的应用和研究进展,以期为制备高耐磨和高韧性的非均匀结构硬质合金提供参考。
  • 图  1  表层贫Co且芯部含η相梯度结构示意图[27]:(a)贫Co表层;(b)富Co过渡层;(c)含η相芯部

    Figure  1.  Schematic of the graded structure[27]: (a) the cobalt-depleted surface; (b) the cobalt-rich transition layer; (c) the core with η phase

    图  2  Co质量分数与维氏硬度从表面到中心的分布[27]

    Figure  2.  Distribution of Co mass fraction and vickers hardness from the surface to the center[27]

    图  3  WC–10Co硬质合金的W–Co–C相图[28]

    Figure  3.  W–Co–C phase diagram of the WC–10Co cemented carbide[28]

    图  4  表层贫Co且芯部不含η相梯度结构示意图[28]:(a)贫Co表层;(b)无η相芯部

    Figure  4.  Schematic of the graded structure[28]: (a) the cobalt-depleted surface; (b) the core without η phase

    图  5  脱碳处理得到的富Co表层梯度硬质合金[30]:(a)表面形貌;(b)断面形貌

    Figure  5.  Graded cemented carbides with the cobalt-rich surface obtained by decarburization[30]: (a) surface morphology; (b) section morphology

    图  6  表层富含立方相梯度结构形成机理示意图[19,3334]

    Figure  6.  Formation mechanism schematic diagram of the graded structure with the surface layer in cubic-rich phase[19,3334]

    图  7  表层富Co无立方相梯度结构形成机理示意图[3536]

    Figure  7.  Formation mechanism schematic diagram of the gradient structure in the surface layer with cobalt-rich and without cubic phase[3536]

    图  8  多层复合涂层示意图[42]

    Figure  8.  Schematic diagram of the multilayer composite coatings[42]

    表  1  基于化学表面改性的常见梯度硬质合金

    Table  1.   Graded cemented carbides based on the chemical surface modification

    化学表面
    改性方法
    材料体系特点梯度结构特征
    渗碳处理缺碳表层贫Co,芯部含η相
    正常碳的质量分数表层贫Co,芯部不含η相
    脱碳处理碳的质量分数偏高表层富Co
    渗氮处理含Ti、Ta、Nb等元素表层富含立方相
    脱氮处理含N元素表层富Co,无立方相
    下载: 导出CSV
  • [1] Liu X M, Zhang J L, Hou C, et al. Mechanisms of WC plastic deformation in cemented carbide. Mater Des, 2018, 150: 154 doi: 10.1016/j.matdes.2018.04.025
    [2] Toller L, Jacobson S, Norgren S. Life time of cemented carbide inserts with Ni–Fe binder in steel turning. Wear, 2017, 376: 1822
    [3] Furberg A, Arvidsson R, Molander S. Environmental life cycle assessment of cemented carbide (WC–Co) production. J Clean Prod, 2019, 209: 1126 doi: 10.1016/j.jclepro.2018.10.272
    [4] Katiyar P K, Singh P K, Singh R, et al. Modes of failure of cemented tungsten carbide tool bits (WC/Co): A study of wear parts. Int J Refract Met Hard Mater, 2016, 54: 27 doi: 10.1016/j.ijrmhm.2015.06.018
    [5] Li C W, Chang K C, Yeh A C, et al. Microstructure characterization of cemented carbide fabricated by selective laser melting process. Int J Refract Met Hard Mater, 2018, 75: 225 doi: 10.1016/j.ijrmhm.2018.05.001
    [6] Bushlya V, Johansson D, Lenrick F, et al. Wear mechanisms of uncoated and coated cemented carbide tools in machining lead-free silicon brass. Wear, 2017, 376: 143
    [7] Brookes K A. Half a century of hardmetals. Met Powder Rep, 1995, 50(12): 22 doi: 10.1016/0026-0657(95)80019-0
    [8] Fang Z Z, Koopman M C, Wang H T. Cemented tungsten carbide hardmetal—An introduction. Compr Hard Mater, 2014, 1: 123
    [9] Ortner H M, Ettmayer P, Kolaska H, et al. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater, 2014, 44: 148 doi: 10.1016/j.ijrmhm.2013.07.014
    [10] Ren X Y, Miao H Z, Peng Z J. A review of cemented carbides for rock drilling: An old but still tough challenge in geo-engineering. Int J Refract Met Hard Mater, 2013, 39: 61 doi: 10.1016/j.ijrmhm.2013.01.003
    [11] Weidow J, Ekström E, Kritikos M, et al. Impact of crystal defects on the grain growth of cemented carbides. Int J Refract Met Hard Mater, 2018, 72: 199 doi: 10.1016/j.ijrmhm.2017.12.017
    [12] Wen Y, Liao J X, Yang Q M, et al. Effect of particle size and high-energy ball milling time on microstructure and mechanical properties of WC–10Co cemented carbides with plate-like WC grains. Mater Res Express, 2019, 6(10): 106570 doi: 10.1088/2053-1591/ab3886
    [13] Zhou X K, Xu Z F, Wang K, et al. One-step sinter-HIP method for preparation of functionally graded cemented carbide with ultrafine grains. Ceram Int, 2016, 42(4): 5362 doi: 10.1016/j.ceramint.2015.12.069
    [14] Zhu E T, Zhang J X, Guo S D, et al. Investigation on sintering principle of ultra-fine cemented carbide prepared by WC–6Co composite powder. Mater Res Express, 2019, 6(11): 116537 doi: 10.1088/2053-1591/ab4745
    [15] Zhou X K, Wang K, Xu Z F, et al. Effect of powder particle size on gradient formation and grain growth in ultrafine crystalline gradient cemented carbide. Int J Refract Met Hard Mater, 2016, 56: 63 doi: 10.1016/j.ijrmhm.2015.11.013
    [16] Avdeenko E N, Zamulaeva E I, Zaitsev A A, et al. Structure and properties of coarse-grained WC–Co alloys with an especially homogeneous microstructure. Russ J Non-Ferrous Met, 2019, 60: 542 doi: 10.3103/S1067821219050055
    [17] Ding Q J, Zheng Y, Ke Z, et al. Effects of fine WC particle size on the microstructure and mechanical properties of WC–8Co cemented carbides with dual-scale and dual-morphology WC grains. Int J Refract Met Hard Mater, 2020, 87: 105166 doi: 10.1016/j.ijrmhm.2019.105166
    [18] Ke Z, Zheng Y, Zhang G T, et al. Microstructure and mechanical properties of dual-grain structured WC–Co cemented carbides. Ceram Int, 2019, 45(17): 21528 doi: 10.1016/j.ceramint.2019.07.146
    [19] Tang S W, Li P Z, Liu D S, et al. Cutting performance of a functionally graded cemented carbide tool prepared by microwave heating and nitriding sintering. High Temp Mater Processes, 2019, 38: 582 doi: 10.1515/htmp-2019-0011
    [20] Konyashin I, Ries B, Hlawatschek S. Engineered surfaces on cemented carbides obtained by tailored sintering techniques. Surf Coat Technol, 2014, 258: 300 doi: 10.1016/j.surfcoat.2014.09.009
    [21] Upadhyaya A, Sarathy D, Wagner G. Advances in alloy design aspects of cemented carbides. Mater Des, 2001, 22: 511 doi: 10.1016/S0261-3069(01)00003-6
    [22] Konyashin I, Farag S, Ries B, et al. WC–Co–Re cemented carbides: Structure, properties and potential applications. Int J Refract Met Hard Mater, 2019, 78: 247 doi: 10.1016/j.ijrmhm.2018.10.001
    [23] Zhang W B, Du Y, Peng Y B. Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: Simulations and experiments. Ceram Int, 2016, 42: 428 doi: 10.1016/j.ceramint.2015.08.127
    [24] Garcia J, Prat O. Experimental investigations and DICTRA simulations on formation of diffusion-controlled fcc-rich surface layers on cemented carbides. Appl Surf Sci, 2011, 257: 8894 doi: 10.1016/j.apsusc.2011.05.024
    [25] Li X F, Liu Y, Liu B, et al. Effects of submicron WC addition on structures, kinetics and mechanical properties of functionally graded cemented carbides with coarse grains. Int J Refract Met Hard Mater, 2016, 56: 132 doi: 10.1016/j.ijrmhm.2016.01.003
    [26] Fischer U, Waldenström M, Hartzell T. Cemented Carbide Body with Increased Wear Resistance: U. S. Patent, 5856626. 1999-1-5
    [27] Fischer U K R, Hartzell E T, Akerman J G H. Cemented Carbide Body Used Preferably for Rock Drilling and Mineral Cutting: U. S. Patent, 4743515. 1988-5-10
    [28] Fan P, Fang Z Z, Guo J. A review of liquid phase migration and methods for fabrication of functionally graded cemented tungsten carbide. Int J Refract Met Hard Mater, 2013, 36: 2 doi: 10.1016/j.ijrmhm.2012.02.006
    [29] Ke Z, Zheng Y, Gao L, et al. Fabrication of functionally graded WC–Co cemented carbides with plate-like WC grains. Powder Metall Met Ceram, 2019, 58: 463 doi: 10.1007/s11106-019-00096-7
    [30] Konyashin I, Hlawatschek S, Ries B, et al. Cobalt capping on WC–Co hardmetals. Part I: A mechanism explaining the presence or absence of cobalt layers on hardmetal articles during sintering. Int J Refract Met Hard Mater, 2014, 42: 142
    [31] García J, Englund S, Haglöf F. Controlling cobalt capping in sintering process of cermets. Int J Refract Met Hard Mater, 2017, 62: 126 doi: 10.1016/j.ijrmhm.2016.06.008
    [32] Emanuelli L, Molinari A, Arrighetti G, et al. Effect of the sintering parameters on the liquid Co migration in WC–Co. Int J Refract Met Hard Mater, 2018, 70: 202 doi: 10.1016/j.ijrmhm.2017.10.014
    [33] Tang S W, Liu D S, Li P N, et al. Microstructure and mechanical properties of functionally gradient cemented carbides fabricated by microwave heating nitriding sintering. Int J Refract Met Hard Mater, 2016, 58: 137 doi: 10.1016/j.ijrmhm.2016.04.013
    [34] Chen Q W, Deng Y, Jiang S, et al. Functionally graded cemented carbides of WC–TiC–Co with cubic rich surface. Powder Metall Technol, 2020, 38(1): 36

    陈巧旺, 邓莹, 姜山, 等. 表层富立方相WC–TiC–Co功能梯度硬质合金. 粉末冶金技术, 2020, 38(1): 36
    [35] Shi L Y, Yang J W, Huang J H, et al. Microstructure evolution and formation mechanism of graded cemented carbide with cubic-carbide-free layer prepared with TiN or Ti(C, N) free powder mixture. Int J Refract Met Hard Mater, 2017, 66: 198 doi: 10.1016/j.ijrmhm.2017.03.017
    [36] Suzuki H, Hayashi K, Taniguchi Y, et al. The β-free layer formed near the surface of vacuum-sintered WC–β–Co alloys containing nitrogen. Trans Jpn Inst Met, 1981, 22(11): 758 doi: 10.2320/matertrans1960.22.758
    [37] Yang M, Guo Z X, Qi K F, et al. Surface modification of WC-based cemented carbide by one-pot non-vapor deposition method derived Al2O3 coatings. Ceram Int, 2016, 42(9): 11509 doi: 10.1016/j.ceramint.2016.04.077
    [38] Fukui H. Evolutional history of coating technologies for cemented carbide inserts—chemical vapor deposition and physical vapor deposition. SEI Tech Rev, 2016, 188(1): 26
    [39] Ginting A, Skein R, Cuaca D, et al. The characteristics of CVD-and PVD-coated carbide tools in hard turning of AISI 4340. Measurement, 2018, 129: 548 doi: 10.1016/j.measurement.2018.07.072
    [40] Thakur A, Gangopadhyay S, Maity K P, et al. Evaluation on effectiveness of CVD and PVD coated tools during dry machining of Incoloy 825. Tribol Trans, 2016, 59(6): 1048 doi: 10.1080/10402004.2015.1131350
    [41] Saketi S, Olsson M. Influence of CVD and PVD coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts–A laboratory study. Wear, 2017, 388: 29
    [42] Boing D, de Oliveira A J, Schroeter R B. Limiting conditions for application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) coated cemented carbide grades in the turning of hardened steels. Wear, 2018, 416: 54
    [43] Berkani S, Yallese M A, Boulanouar L, et al. Statistical analysis of AISI304 austenitic stainless steel machining using Ti(C,N) /Al2O3/TiN CVD coated carbide tool. Int J Ind Eng Comput, 2015, 6(4): 539
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  223
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回