超声空化对陶瓷刀具材料晶粒生长的影响

李东绪 宋金鹏 高姣姣 吕明

李东绪, 宋金鹏, 高姣姣, 吕明. 超声空化对陶瓷刀具材料晶粒生长的影响[J]. 粉末冶金技术, 2021, 39(4): 332-338. doi: 10.19591/j.cnki.cn11-1974/tf.2020020005
引用本文: 李东绪, 宋金鹏, 高姣姣, 吕明. 超声空化对陶瓷刀具材料晶粒生长的影响[J]. 粉末冶金技术, 2021, 39(4): 332-338. doi: 10.19591/j.cnki.cn11-1974/tf.2020020005
LI Dong-xu, SONG Jin-peng, GAO Jiao-jiao, LÜ Ming. Effect of ultrasonic cavitation on grain growth of ceramic tool materials[J]. Powder Metallurgy Technology, 2021, 39(4): 332-338. doi: 10.19591/j.cnki.cn11-1974/tf.2020020005
Citation: LI Dong-xu, SONG Jin-peng, GAO Jiao-jiao, LÜ Ming. Effect of ultrasonic cavitation on grain growth of ceramic tool materials[J]. Powder Metallurgy Technology, 2021, 39(4): 332-338. doi: 10.19591/j.cnki.cn11-1974/tf.2020020005

超声空化对陶瓷刀具材料晶粒生长的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020020005
基金项目: 国家自然科学基金资助项目(51875388)
详细信息
    通讯作者:

    E-mail:songjinpeng@tyut.edu.cn

  • 中图分类号: TF124.1

Effect of ultrasonic cavitation on grain growth of ceramic tool materials

More Information
  • 摘要: 为了研究超声无压烧结陶瓷刀具材料时超声空化对晶粒生长的影响,分析了气孔在熔融金属中发生超声空化的条件,建立了含有空化泡的晶粒模型,讨论了超声空化对晶粒的作用,并采用蒙特卡罗法模拟了未施加和施加超声下的晶粒生长过程,研究了超声空化对晶粒生长过程的影响。结果表明:当空化泡的半径介于1 μm~2 μm时,超声波的声压阈值为8.02×106 Pa,频率阈值为2.00×106 Hz;超声空化可增大晶格振动频率和振动能量,阻碍晶粒生长,起到细化晶粒和减小孔洞的作用。
  • 图  1  气泡初始半径与声压阈值的关系

    Figure  1.  Relationship between the initial radius of the bubbles and the threshold of sound pressure

    图  2  气泡初始半径与频率阈值的关系

    Figure  2.  Relationship between the initial radius of the bubbles and the threshold frequency

    图  3  空化泡及其周围晶粒的理想模型

    Figure  3.  Ideal model of the cavitation bubbles and surrounding grains

    图  4  蒙特卡罗法模拟的陶瓷刀具材料晶粒形貌:(a)未施加超声;(b)施加超声下

    Figure  4.  Grain morphology of the ceramic tool materials simulated by the Monte Carlo method: (a) without ultrasound; (b) with ultrasound

    图  5  陶瓷刀具材料晶粒平均半径与蒙特卡罗模拟时间步的关系

    Figure  5.  Relationship between the grain average radius of the ceramic tool materials and the Monte-Carlo step

  • [1] Fang S X, Zhao H L, Zhang Q J. The application status and development trends of ultrasonic machining technology. J Mech Eng, 2017, 53(19): 22 doi: 10.3901/JME.2017.19.022

    房善想, 赵慧玲, 张勤俭. 超声加工技术的应用现状及其发展趋势. 机械工程学报, 2017, 53(19): 22 doi: 10.3901/JME.2017.19.022
    [2] Shang B, Jiang R P, Li X Q, et al. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states. Chin J Eng, 2019, 41(8): 1007

    商兵, 蒋日鹏, 李晓谦, 等. 超声外场对不同温控状态下ZL205A铝合金凝固规律的影响. 工程科学学报, 2019, 41(8): 1007
    [3] Eskin D G, Wang F. Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy. Metals, 2019, 9(2): 161 doi: 10.3390/met9020161
    [4] Liu X Y. Simulation on Microstructure Evolution of Al2O3/SiC Ceramic Cutting Tool Materials [Dissertation]. Tianjin: Hebei University of Technology, 2015.

    刘曦阳. Al2O3/SiC陶瓷刀具材料微观组织演变的模拟[学位论文]. 天津: 河北工业大学, 2015.
    [5] Wang X M, Huang L X, Qin X G. Kinetic Monte Carlo simulation of soild-state sintering of powder. Chin J Stereol Image Anal, 2017, 22(2): 151

    王晓勉, 黄龙霄, 秦湘阁. 粉末固相烧结的动力学蒙特卡洛模拟. 中国体视学与图像分析, 2017, 22(2): 151
    [6] Shao X, Zheng Y, Wang S W, et al. Monte Carlo simulation on grain growth of the ceramic phase in Mo2FeB2-based cermets during the liquid phase sintering. Cem Carbide, 2018, 35(3): 147

    邵想, 郑勇, 王守文, 等. Mo2FeB2基金属陶瓷液相烧结过程中硬质相晶粒生长的蒙特卡罗模拟. 硬质合金, 2018, 35(3): 147
    [7] Ma L, Yu J C, Guo X, et al. Pressureless densification and properties of TiB2–B4C composite ceramics with Ni as additives. Micro Nano Lett, 2018, 13(7): 947 doi: 10.1049/mnl.2017.0709
    [8] Zhang C B. Numerical Analysis of Cavitation Bubbles Kinematics in Tumor Ultrasound Therapy [Dissertation]. Dalian: Dalian Jiaotong University, 2016.

    张晨博. 肿瘤超声治疗中气泡空化运动学数值分析[学位论文]. 大连: 大连交通大学, 2016.
    [9] Bao R, Li L B, Yi J H, et al. The fabrication of carbon nanotube reinforced copper matrix powder. Powder Metall Technol, 2016, 34(6): 454 doi: 10.3969/j.issn.1001-3784.2016.06.011

    鲍瑞, 李澜波, 易健宏, 等. CNTs增强铜基复合粉末制备的研究进展. 粉末冶金技术, 2016, 34(6): 454 doi: 10.3969/j.issn.1001-3784.2016.06.011
    [10] Cai C L, Tu J, Guo X S, et al. The impacts of encapsulating shell properties and acoustic driving parameters on the dynamic behavior of interacting microbubbles. Acta Acust, 2019, 44(4): 772

    蔡晨亮, 屠娟, 郭霞生, 等. 包膜黏弹特性及声驱动参数对相互作用微泡动力学行为的影响. 声学学报, 2019, 44(4): 772
    [11] Hu Q Q, Zhang L H. Effects of ultrasonic cavitation behavior on grain refinement of 7050 aluminum alloy. Spec Cast Nonferrous Alloys, 2012, 32(4): 387

    胡谦谦, 张立华. 超声空化对7050铝合金的细晶分析. 特种铸造及有色合金, 2012, 32(4): 387
    [12] Li Z W, Xu Z W, Ma L, et al. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect. Ultrason Sonochem, 2019, 50: 278 doi: 10.1016/j.ultsonch.2018.09.027
    [13] Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials. 2nd Ed. Beijing: Tsinghua University Press, 2011.

    关振铎, 张中太, 焦金生. 无机材料物理性能. 2版. 北京: 清华大学出版社, 2011.
    [14] Wang X, Atkinson A. Combining densification and coarsening in a Cellular Automata-Monte-Carlo simulation of sintering: Methodology and calibration. Comput Mater Sci, 2018, 143: 338 doi: 10.1016/j.commatsci.2017.11.023
    [15] Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010

    颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010
    [16] Zhang D L, Weng G A, Gong S P, et al. Computer simulation of grain growth of intermediate and final-stage sintering and Ostwald ripening of BaTiO3-based PTCR ceramics. Mater Sci Eng B, 2003, 99(1-3): 428 doi: 10.1016/S0921-5107(02)00449-X
  • 加载中
图(5)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  125
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回