少钴/无钴WC材料制备研究进展

唐愈

唐愈. 少钴/无钴WC材料制备研究进展[J]. 粉末冶金技术, 2021, 39(3): 280-286. doi: 10.19591/j.cnki.cn11-1974/tf.2020020006
引用本文: 唐愈. 少钴/无钴WC材料制备研究进展[J]. 粉末冶金技术, 2021, 39(3): 280-286. doi: 10.19591/j.cnki.cn11-1974/tf.2020020006
TANG Yu. Research progress on preparation of cobalt-less/cobalt-free WC-based materials[J]. Powder Metallurgy Technology, 2021, 39(3): 280-286. doi: 10.19591/j.cnki.cn11-1974/tf.2020020006
Citation: TANG Yu. Research progress on preparation of cobalt-less/cobalt-free WC-based materials[J]. Powder Metallurgy Technology, 2021, 39(3): 280-286. doi: 10.19591/j.cnki.cn11-1974/tf.2020020006

少钴/无钴WC材料制备研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020020006
基金项目: 2020年度广东省普通高校青年创新人才资助项目(2020KQNCX085)东莞理工学院中实金属有限公司博士工作站(GC200104-42)资助项目(186100030019)
详细信息
    通讯作者:

    E-mail:tangyu@dgut.edu.cn

  • 中图分类号: TG135.5

Research progress on preparation of cobalt-less/cobalt-free WC-based materials

More Information
  • 摘要: 针对我国钴资源稀缺及传统WC–Co硬质合金在腐蚀介质与高温环境下应用所存在的缺陷,总结了一系列性能良好的少钴/无钴WC材料,包括以其他金属或金属间化合物替代Co作为粘结剂的WC硬质合金,不添加任何粘结剂的纯WC材料以及由陶瓷相增强的WC复合材料,讨论了少钴/无钴WC材料的优缺点,并展望了其发展趋势。
  • 图  1  球磨时间对烧结态WC–Co8–Al2合金硬度和横向断裂强度的影响[5]

    Figure  1.  Hardness and TRS of the sintered WC–Co8–Al2 alloys with different milling times[5]

    图  2  经不同时间球磨后烧结态WC–Co8–Al2合金X射线衍射图谱[5]

    Figure  2.  XRD patterns of the sintered WC–Co8–Al2 alloys with different milling time[5]

    图  3  经1380 ℃烧结WC–10Ni3Al试样显微组织:(a)垂直于烧结压力方向截面;(b)平行于烧结压力方向截面[8]

    Figure  3.  SEM images of the WC–10Ni3Al specimens sintered at 1380 ℃: (a) vertical to the pressing direction; (b) parallel to the pressing direction[8]

    图  4  烧结温度对WC–10Ni3Al试样密度和横向断裂强度的影响[8]

    Figure  4.  Effect of sintering temperature on the density and TRS of the WC–10Ni3Al specimens[8]

    图  5  烧结温度对WC–10Ni3Al试样的硬度与断裂韧性的影响[8]

    Figure  5.  Effect of sintering temperature on the hardness and fracture toughness of the WC–10Ni3Al specimens[8]

    图  6  WC–6Ni3Al、WC–10Ni3Al及YG8硬质合金刀片后刀面磨损量随切削时间的变化[10]

    Figure  6.  Variation on the flank wear of WC–6Ni3Al, WC–10Ni3Al, and YG8 inserts with the cutting time[10]

    图  7  经不同温度烧结的纯WC块体材料(原料粉末粒径:800 nm)的扫描电子显微形貌:(a)1750 ℃;(b)2000 ℃[16]

    Figure  7.  SEM images of the WC bulk specimens (raw material particle size: 800 nm) at different sintering temperatures: (a) 1750 ℃; (b) 2000 ℃[16]

    图  8  Al2O3体积分数对WC–Al2O3复合材料硬度(HV10)、横向断裂强度以及断裂韧性的影响[16]

    Figure  8.  Effect of Al2O3 volume fraction on the Vickers hardness (HV10), fracture toughness, and TRS of the WC–Al2O3 composite materials[16]

    图  9  WC–Al2O3材料中裂纹扩展与断面扫描电子显微形貌:(a)裂纹桥接;(b)穿晶断裂[16]

    Figure  9.  SEM images of the crack propagation and fracture of the WC–Al2O3 composite materials: (a) crack-bridging; (b) transgranular fracture[16]

    图  10  WC–Si3N4复合材料烧结显微组织[22]

    Figure  10.  SEM images of the sintered WC–Si3N4 composite [22]

    图  11  烧结WC–Si3N4复合材料压痕裂纹形貌以及β-Si3N4晶须增韧机制[22]:(a)压痕形貌;(b)裂纹扩展路径;(c)裂纹桥接;(d)晶须拔出

    Figure  11.  SEM images of the indentation cracks of the sintered WC–Si3N4 composites and the toughening mechanism of Si3N4 whisker[22]: (a) indentation morphology; (b) crack propagation path; (c) crack bridging; (d) whisker pullout

    表  1  WC块体材料原料粒径、烧结温度与力学性能[16]

    Table  1.   Raw material particle size, sintering temperature, and mechanical properties of the WC bulk specimens[16]

    粉末粒径 / nm烧结温度 / ℃密度 / (g·cm−3)平均晶粒尺寸 / nm硬度, HV10 / GPa横向断裂强度 / MPa断裂韧性 / (MPa·m1/2)
    800175015.6580024.811276.06.14
    800200015.60200021.441429.06.62
    200175015.3620024.69853.15.24
    100190015.3910025.20861.74.48
    下载: 导出CSV
  • [1] Sun J L, Zhao J, Huang Z F, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett, 2020, 12(1): 12 doi: 10.1007/s40820-019-0348-z
    [2] Zheng J, Zhao Z W, Liu X F, et al. Effect of nano-composite grain inhibitors on composition and microtructure of WC‒TiC‒Co cemented carbide prepared by microwave method. Powder Metall Ind, 2018, 28(4): 21

    郑娟, 赵志伟, 刘晓芳, 等. 纳米复合抑制剂对微波法制备WC‒TiC‒Co硬质合金组成和微观结构的影响. 粉末冶金工业, 2018, 28(4): 21
    [3] Chen Q W, Deng Y, Jiang S, et al. Functionally graded cemented carbides of WC‒TiC‒Co with cubic rich surface. Powder Metall Technol, 2020, 38(1): 36

    陈巧旺, 邓莹, 姜山, 等. 表层富立方相WC‒TiC‒Co功能梯度硬质合金. 粉末冶金技术, 2020, 38(1): 36
    [4] Chang L F, Jiang Y, Wang W, et al. Ultrafine WC‒0.5Co‒xTaC cemented carbides prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2019, 84(1): 1
    [5] Ma N, Zhang K K, Yin D Q, et al. Synthesis and characterization of nanostructured WC–Co/Al powder prepared by mechanical alloying. J Nanomater, 2016, 2016(Special issue): 9080684
    [6] Li Y Y, Zhang J B, Li X Q, et al. Research on WC–6Co–1.5Al hardmetals prepared by spark plasma sintering. Powder Metall Technol, 2006, 24(3): 199 doi: 10.3321/j.issn:1001-3784.2006.03.009

    李元元, 张建兵, 李小强, 等. SPS烧结制备WC–6Co–1.5Al硬质合金的研究. 粉末冶金技术, 2006, 24(3): 199 doi: 10.3321/j.issn:1001-3784.2006.03.009
    [7] Tumanov A V, Gostev Y V, Panov V S, et al. Wetting of TiC–WC system carbides with molten Ni3Al. Sov Powder Metall Met Ceram, 1986, 25(1): 428
    [8] Li X Q, Chen J, Zheng D H, et al. Preparation and mechanical properties of WC–10Ni3Al cemented carbides with plate-like triangular prismatic WC grains. J Alloys Compd, 2012, 544(1): 134
    [9] Li X Q, Zhang M A, Zheng D H, et al. The oxidation behavior of the WC–10wt. % Ni3Al composite fabricated by spark plasma sintering. J Alloys Compd, 2015, 629(1): 148
    [10] Liu X, Liang L, Xu X, et al. Cutting forces and wear resistance of WC–Ni3Al cemented carbides in machining austenitic stainless steel // 10th International Conference on Progress of Machining Technology (ICPMT2012). Tsubame, 2012: 39.
    [11] Kim H C, Shon I J, Yoon J K, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion. Int J Refract Met Hard Mater, 2006, 24(3): 202 doi: 10.1016/j.ijrmhm.2005.04.004
    [12] Zhang J X, Zhang G Z, Zhao S X, et al. Binder-free WC bulk synthesized by spark plasma sintering. J Alloys Compd, 2009, 479(1): 427
    [13] Zheng D H, Li X Q, Li Y Y, et al. Zirconia-toughened WC with/without VC and Cr3C2. Ceram Int, 2014, 40(1): 2011 doi: 10.1016/j.ceramint.2013.07.111
    [14] Huang B, Chen L D, Bai S Q. Bulk ultrafine binderless WC prepared by spark plasma sintering. Scr Mater, 2006, 54(3): 441 doi: 10.1016/j.scriptamat.2005.10.014
    [15] Zheng D H, Li X Q, Li Y Y, et al. ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering. J Alloys Compd, 2013, 572(1): 62
    [16] Zheng D H, Li X Q, Ai X, et al. Bulk WC–Al2O3 composites prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2012, 30(1): 51 doi: 10.1016/j.ijrmhm.2011.07.003
    [17] Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int J Refract Met Hard Mater, 2008, 26(1): 48 doi: 10.1016/j.ijrmhm.2007.01.006
    [18] Sun J L, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mater Sci, 2019, 44(3): 211 doi: 10.1080/10408436.2018.1483320
    [19] Dong W, Zhu S, Wang Y, et al. Infuence of VC and Cr3C2 as grain growth inhibitors on WC–Al2O3 composites prepared by hot press sintering. Int J Refract Met Hard Mater, 2014, 45(1): 223
    [20] Radajewski M, Schimpf C, Krüger L. Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J Eur Ceram Soc, 2017, 37(5): 2031 doi: 10.1016/j.jeurceramsoc.2017.01.005
    [21] Sun J L, Zhao J, Ni X Y, et al. Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering. J Eur Ceram Soc, 2018, 38(9): 3096 doi: 10.1016/j.jeurceramsoc.2018.02.037
    [22] Zheng D H, Li X Q, Li Y Y, et al. In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering. Mater Sci Eng A, 2013, 561(1): 445
    [23] Kim H D, Han B D, Park D S, et al. Novel two-step sintering process to obtain a bimodal microstructure in silicon nitride. J Am Ceram Soc, 2002, 85(1): 245
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  256
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回