WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响

宋金鹏 于成功 高姣姣 吕明

宋金鹏, 于成功, 高姣姣, 吕明. WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2020, 38(4): 243-248. doi: 10.19591/j.cnki.cn11-1974/tf.2020030004
引用本文: 宋金鹏, 于成功, 高姣姣, 吕明. WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响[J]. 粉末冶金技术, 2020, 38(4): 243-248. doi: 10.19591/j.cnki.cn11-1974/tf.2020030004
SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. doi: 10.19591/j.cnki.cn11-1974/tf.2020030004
Citation: SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. doi: 10.19591/j.cnki.cn11-1974/tf.2020030004

WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020030004
基金项目: 

国家自然科学基金资助项目 51875388

国家自然科学基金资助项目 51405326

详细信息
    通讯作者:

    宋金鹏, E-mail: songjinpeng@tyut.edu.cn

  • 中图分类号: TB332;TG711

Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials

More Information
  • 摘要: 采用热压烧结技术制备了TiCN-HfN-WC金属陶瓷刀具材料, 研究了WC含量(质量分数)对金属陶瓷刀具材料微观组织和力学性能的影响。结果表明: TiCN-HfN-32%WC金属陶瓷刀具材料由TiCN、(Ti, Hf, W)(C, N)、WC和MoNi组成, 材料中还含有极少量的(Ti, Mo, W)(C, N)固溶体, 材料内部形成了网状骨架结构。随着添加WC质量分数的增加, 材料中晶粒粒度降低, 添加WC可抑制材料中TiCN晶粒的生长, 起到细化TiCN晶粒的作用; 材料的相对密度、硬度和断裂韧度都具有先增大后减小的变化趋势, 材料的抗弯强度逐渐增大。当WC质量分数为32%时, 材料具有相对较好的综合力学性能, 其硬度为20.2GPa, 断裂韧度为7.1MPa·m1/2, 抗弯强度为1581.3MPa。
  • 图  1  THW32试样X射线衍射图谱

    Figure  1.  XRD patterns of THW32

    图  2  THW32抛光面显微形貌及能谱分析:(a)显微形貌;(b)点A能谱;(c)点B能谱

    Figure  2.  Morphology and EDS analysis of the THW32polished surface: (a)SEM image; (b)EDS analysis of point A; (c)EDS analysis of point B

    图  3  THW试样断口形貌:(a)THW8;(b)THW16;(c)THW24;(d)THW32

    Figure  3.  Fracture morphologies of THW: (a)THW8;(b)THW16;(c)THW24;(d)THW32

    表  1  THW组成成分(质量分数)

    Table  1.   THW constituent  %

    试样 TiCN WC HfN Ni Mo
    THW8 64 8 20 4 4
    THW16 56 16 20 4 4
    THW24 48 24 20 4 4
    THW32 40 32 20 4 4
    下载: 导出CSV

    表  2  THW相对密度和力学性能

    Table  2.   Relative density and mechanical properties of THW

    试样 相对密度/% 维氏硬度/GPa 断裂韧度/(MPa·m1/2) 抗弯强度/MPa
    TH[17] 99.6 ± 0.1 19.4 ± 0.2 8.5 ± 0.2 1235.9 ± 23.6
    THW8 99.5 ± 0.2 19.2 ± 0.3 6.3 ± 0.2 1176.2 ± 31.2
    THW16 99.6 ± 0.1 19.8 ± 0.2 6.7 ± 0.3 1264.5 ± 26.4
    THW24 99.8 ± 0.1 20.6 ± 0.3 7.3 ± 0.2 1386.2 ± 34.9
    THW32 99.7 ± 0.2 20.2 ± 0.3 7.1 ± 0.3 1581.3 ± 29.5
    下载: 导出CSV
  • [1] Xiong J, Zhang Y K, Shen B L, et al. The preparation and performance of superfine TiCN cermet. Powder Metall Technol, 2003, 21(2): 92 doi: 10.3321/j.issn:1001-3784.2003.02.004

    熊继, 张亚昆, 沈保罗, 等. 超细TiCN金属陶瓷的制备及性能. 粉末冶金技术, 2003, 21(2): 92 doi: 10.3321/j.issn:1001-3784.2003.02.004
    [2] Tang S W, Zhang H A, Yan J H, et al. Research on preparing ultra-fine grain TiCN matrix cermets by vacuum microwave sintering. Powder Metall Technol, 2010, 28(3): 220 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201003014.htm

    唐思文, 张厚安, 颜建辉, 等. 真空微波烧结制备TiCN基金属陶瓷. 粉末冶金技术, 2010, 28(3): 220 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201003014.htm
    [3] Li C, Li N, Liu X Q, et al. Effect of binder Co and Ni on the microstructure and mechanical properties of Ti (C0.7N0.3)-based cermets. Powder Metall Ind, 2019, 29(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201901011.htm

    李朝, 李楠, 柳学全, 等. Co和Ni对Ti (C0.7N0.3)基金属陶瓷组织和力学性能的影响. 粉末冶金工业, 2019, 29(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201901011.htm
    [4] Ye X, Chen S J, Zhong Y H, et al. Effect of Fe content on mechanical property of TiC-based cermets. Powder Metall Ind, 2019, 29(5): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905011.htm

    叶旋, 陈绍军, 钟燕辉, 等. Fe含量对TiC基金属陶瓷力学性能的影响. 粉末冶金工业, 2019, 29(5): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905011.htm
    [5] Ma D D. Influencing factors and development trend of Ti (C, N) based cermets. Ceramics, 2018(7): 20 doi: 10.3969/j.issn.1002-2872.2018.07.004

    马调调. Ti (C, N)基金属陶瓷性能影响因素及发展趋势. 陶瓷, 2018(7): 20 doi: 10.3969/j.issn.1002-2872.2018.07.004
    [6] Xiao S Q, Liu J, Xiao B J, et al. Towards high-strength and high-toughness Ti (C, N)-based cermets: a technological review. Mater Rev, 2018, 32(7): 1129 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201807014.htm

    肖水清, 刘杰, 肖白军, 等. 实现Ti (C, N)基金属陶瓷强韧化的技术路径. 材料导报, 2018, 32(7): 1129 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201807014.htm
    [7] Yang Z X. Preparation and wear mechansim of cermet sintex for high speed cutting. Foundry Technol, 2017, 38(2): 298 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201702010.htm

    杨中秀. 高速切削用金属陶瓷刀具的制备及磨损机理研究. 铸造技术, 2017, 38(2): 298 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201702010.htm
    [8] Verma V, Kumar B V M. Processing of TiCN-WC-Ni/Co cermets via conventional and spark plasma sintering technique. Trans Indian Inst Met, 2017, 70(3): 843 doi: 10.1007/s12666-017-1069-y
    [9] Wu Y M, Zhou L M, Xiong J, et al. Effect of WC and Mo2C addition on microhardness of Ti (C, N)-based cermets at high temperature. Mater Mech Eng, 2017, 41(7): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201707005.htm

    吴悦梅, 周黎明, 熊计, 等. WC和Mo2C的添加对Ti (C, N)基金属陶瓷高温显微硬度的影响. 机械工程材料, 2017, 41(7): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201707005.htm
    [10] Xiong H W, Wu Y X, Li Z Y, et al. Comparison of Ti (C, N)-based cermets by vacuum and gas-pressure sintering: Microstructure and mechanical properties. Ceram Int, 2018, 44(1): 805 doi: 10.1016/j.ceramint.2017.10.003
    [11] Lin N, Zhao L B, Zou J C, et al. Improvement in densification process and properties of Ti (C, N)-based cermets with vanadium carbide addition. Ceram Int, 2019, 45(2): 2692 doi: 10.1016/j.ceramint.2018.10.210
    [12] Chen M, Xiao X, Zhang X F. Effect of TaC content on microstructure and properties of TiCN-based cermets. Mater Sci Eng Powder Metall, 2016, 21(2): 270 doi: 10.3969/j.issn.1673-0224.2016.02.013

    陈敏, 肖玄, 张雪峰. TaC含量对TiCN基金属陶瓷组织与性能的影响. 粉末冶金材料科学与工程, 2016, 21(2): 270 doi: 10.3969/j.issn.1673-0224.2016.02.013
    [13] Sun W C, Zhang P, Li P, et al. Effect of short carbon fibre concentration on microstructure and mechanical properties of TiCN-based cermets. Adv Appl Ceram, 2016, 115(4): 216 doi: 10.1080/17436753.2015.1120403
    [14] Zhang Y, Cheng Y, Hu H P, et al. Experimental study of Ti (C, N)/A12O3 cermet tool in dry machining of hardened steel. Tool Eng, 2017, 51(3): 19 doi: 10.3969/j.issn.1000-7008.2017.03.004

    张勇, 程寓, 胡瀚彭, 等. 基于微波烧结的Ti (C, N)/A12O3金属陶瓷刀具切削淬硬钢的试验研究. 工具技术, 2017, 51(3): 19 doi: 10.3969/j.issn.1000-7008.2017.03.004
    [15] Lü C C, Peng Z J, Peng Y, et al. Addition effect of ZrC nano-powder on the microstructure and mechanical properties of TiCN-based cermets prepared by spark plasma sintering. Rare Met Mater Eng, 2015, 44(Suppl 1): 723 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2015S1180.htm

    吕长春, 彭志坚, 彭瑛, 等. 添加ZrC纳米粉对放电等离子体烧结TiCN基金属陶瓷微观结构和力学性能的影响. 稀有金属材料与工程, 2015, 44(增刊1): 723 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2015S1180.htm
    [16] Zhang M X, Yao H L, Wang H T, et al. In situ Ti (C, N)-based cermets by reactive hot pressing: reaction process, densification behavior and mechanical properties. Ceram Int, 2019, 45(1): 1363 doi: 10.1016/j.ceramint.2018.07.270
    [17] Liu H L, Shi Q, Huang C Z, et al. In-situ fabricated TiB2 particle-whisker synergistically toughened Ti (C, N)-based ceramic cutting tool material. Chin J Mech Eng, 2015, 28(2): 338 doi: 10.3901/CJME.2015.0107.008
    [18] Gao J J, Song J P, Liang G X, et al. Effects of HfC addition on microstructures and mechanical properties of TiC0.7N0.3-based and TiC0.5N0.5-based ceramic tool materials. Ceram Int, 2017, 43(17): 14945 http://www.sciencedirect.com/science/article/pii/S0272884217317029
    [19] Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85 doi: 10.1016/j.jallcom.2018.04.213
    [20] Song J P, Xie J C, Lü M Z, et al. Microstructure and mechanical properties of TiB2-HfC ceramic tool materials. JOM, 2018, 70(11): 2544 doi: 10.1007/s11837-018-3128-1
    [21] Xie J C, Song J P, Gao J J, et al. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials. Powder Metall Technol, 2019, 37(6): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201906004.htm

    谢俊彩, 宋金鹏, 高姣姣, 等. HfN含量对ZrB2基陶瓷材料微观组织和力学性能的影响. 粉末冶金技术, 2019, 37(6): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201906004.htm
    [22] Song J G, Huang C Z, Lü M, et al. Effects of TiC content and melt phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials. Mater Sci Eng A, 2014, 605: 137 doi: 10.1016/j.msea.2014.03.036
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  103
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 刊出日期:  2020-08-27

目录

    /

    返回文章
    返回