耐事故燃料芯块的制备方法与研究进展

张翔 潘小强 陆永洪 张瑞谦

张翔, 潘小强, 陆永洪, 张瑞谦. 耐事故燃料芯块的制备方法与研究进展[J]. 粉末冶金技术, 2022, 40(4): 334-339. doi: 10.19591/j.cnki.cn11-1974/tf.2020030006
引用本文: 张翔, 潘小强, 陆永洪, 张瑞谦. 耐事故燃料芯块的制备方法与研究进展[J]. 粉末冶金技术, 2022, 40(4): 334-339. doi: 10.19591/j.cnki.cn11-1974/tf.2020030006
ZHANG Xiang, PAN Xiao-qiang, LU Yong-hong, ZHANG Rui-qian. Preparation and research progress of accident tolerant fuel pellets[J]. Powder Metallurgy Technology, 2022, 40(4): 334-339. doi: 10.19591/j.cnki.cn11-1974/tf.2020030006
Citation: ZHANG Xiang, PAN Xiao-qiang, LU Yong-hong, ZHANG Rui-qian. Preparation and research progress of accident tolerant fuel pellets[J]. Powder Metallurgy Technology, 2022, 40(4): 334-339. doi: 10.19591/j.cnki.cn11-1974/tf.2020030006

耐事故燃料芯块的制备方法与研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020030006
详细信息
    通讯作者:

    E-mail: xiangnpic@163.com

  • 中图分类号: TL211

Preparation and research progress of accident tolerant fuel pellets

More Information
  • 摘要: 福岛核事故发生后,为提高核燃料元件抵抗严重事故能力而开发的耐事故燃料成为核行业研究热点。本文介绍了以BeO、SiC掺杂为代表的热导增强型UO2芯块、高铀密度高热导燃料芯块和全陶瓷微封装燃料芯块,总结了耐事故燃料芯块的优势特性、热导率、制备方法和研究进展,分析和展望了耐事故燃料芯块的现有问题和应用前景,以期为耐事故燃料芯块的研究提供参考。
  • 图  1  的BeO在UO2中的显微形貌[5]:连续相分布;(b)弥散分布

    Figure  1.  Microstructure of BeO distributed in the UO2 matrix[5]: (a) continuous distribution; (b) dispersed distribution

    图  2  两种BeO连续相分布的UO2芯块显微组织[7]:(a)SB–UO2–BeO;(b)GG–UO2–BeO

    Figure  2.  Microstructure of the UO2 pellets with the continuous distribution BeO[7]: (a) SB–UO2–BeO; (b) GG–UO2–BeO

    图  3  UO2、BeO、SB–UO2–BeO和GG–UO2–BeO芯块热导率曲线[7]

    Figure  3.  Thermal conductivity curves of the UO2, BeO, SB–UO2–BeO, and GG–UO2–BeO pellets[7]

    图  4  放电等离子烧结制备的BeO/UO2与UO2芯块在室温至1600 ℃下热导率[8]

    Figure  4.  Thermal conductibility of the UO2 and BeO/UO2 pellets from room temperature to 1600 ℃[8]

    图  5  掺杂不同体积分数SiC的UO2芯块热导率[12]

    Figure  5.  Thermal conductibility of the UO2–SiC composites doped by SiC particles in various volume fraction[12]

    图  6  UO2芯块不同温度下放电等离子烧结显微形貌[13]:(a)620 ℃;(b)1200  ℃;(c)1500  ℃

    Figure  6.  Microstructure of the UO2 pellets by SPS at different temperatures[13]: (a) 620  ℃; (b) 1200  ℃; (c) 1500  ℃

    图  7  UO2–10%SiC复合芯块不同温度下放电等离子烧结显微形貌[13]:(a)1200 ℃;(b)1300  ℃;(c)1500  ℃

    Figure  7.  Microstructure of the UO2–10%SiC pellets sintered at different temperatures[13]: (a) 1200  ℃; (b) 1300  ℃; (c) 1500  ℃

    图  8  几种燃料导热性与温度的关系[17]

    Figure  8.  Thermal conductivity of the U–Si binary compounds, UO2, and UN as a function of temperature[17]

    图  9  放电等离子烧结制备得到的全陶瓷封装燃料芯块组织结构[23]

    Figure  9.  Microstructure of the fully ceramic microencapsulated fuel pellets by SPS[23]

    图  10  全陶瓷封装燃料芯块热导率与TRISO颗粒体积分数关系[25]

    Figure  10.  Thermal conductivity of the fully ceramic microencapsulated fuel pellets as a function of TRISO particle volume fraction[25]

  • [1] Carmack J. Accident tolerant fuel development program. Nucl Plant J, 2014, 32(1): 46
    [2] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501(4): 13
    [3] Zhou W Z, Liu R, Revankar S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2–BeO fuel in light water reactors. Ann Nucl Eng, 2015, 81(1): 240
    [4] Revankar S T, Zhou W Z, Chandramouli D. Thermal performance of UO2–BeO fuel during a loss of coolant accident. Int J Nucl Energy Sci Eng, 2015, 5: 1 doi: 10.14355/ijnese.2015.05.001
    [5] McDeavitt S, Ragusa J, Revankar S T, et al. A high-conductivity oxide fuel concept. Nucl Eng Int, 2011, 56(682): 40
    [6] Latta R, Revankar S T, Solomon A A. Modeling and measurement of thermal properties of ceramic composite fuel for light water reactors. Heat Transfer Eng, 2008, 29(4): 357 doi: 10.1080/01457630701825390
    [7] Solomon A A, Revankar S, Areva J K M. Enhanced thermal conductivity oxide fuels. U. S. Department of Energy Office of Scientific and Technical Information (2006-01-17) [2020-03-10]. https://www.osti.gov/servlets/purl/862369
    [8] Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of BeO/UO2 composites prepared by spark plasma sintering (SPS). Scr Mater, 2018, 142: 70 doi: 10.1016/j.scriptamat.2017.08.031
    [9] Yeo S, Mckenna E, Baney R, et al. Fabrication strategies and thermal conductivity assessment of high density UO2 Pellet incorporated with SiC. Mater Res Soc Symp Proc, 2012, 1444: 9
    [10] Yeo S, Mckenna E, Baney R, et al. Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 433: 66 doi: 10.1016/j.jnucmat.2012.09.015
    [11] Ge L H, Subhash G, Baney R H, et al. Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 435(1-3): 1 doi: 10.1016/j.jnucmat.2012.12.010
    [12] Yeo S, Baney R, Subhash G, et al. The influence of SiC particle size and volume fraction on the thermal conductivity of spark plasma sintered UO2–SiC composites. J Nucl Mater, 2013, 442: 245 doi: 10.1016/j.jnucmat.2013.09.003
    [13] Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of SiC/UO2 composites up to 1600 ℃. Ceram Int, 2018, 44: 10069 doi: 10.1016/j.ceramint.2018.02.208
    [14] Cappia F, Harp J M, McCoy K. Post-irradiation examinations of UO2 composites as part of the accident tolerant fuels campaign. J Nucl Mater, 2019, 517: 97 doi: 10.1016/j.jnucmat.2019.01.050
    [15] Middleburgh S C, Claisse A, Andersson D A, et al. Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. J Nucl Mater, 2018, 501: 234 doi: 10.1016/j.jnucmat.2018.01.018
    [16] Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J Nucl Mater, 2015, 466: 728 doi: 10.1016/j.jnucmat.2015.06.027
    [17] White J T, Nelson A T, Dunwoody J T, et al. Thermophysical properties of U3Si2 to 1773 K. J Nucl Mater, 2015, 464: 275 doi: 10.1016/j.jnucmat.2015.04.031
    [18] Mcclellan K J. FY2015 ceramic fuels development annual highlights. U. S. Department of Energy Office of Scientific and Technical Information (2015-09-22) [2020-03-10]. https://www.osti.gov/servlets/purl/1215812.
    [19] Zhang X, Liu G L, Liu Y M, et al. Study on fabrication and microstructural analysis of U3Si2 fuel pellets. Nucl Power Eng, 2019, 40(1): 56

    张翔, 刘桂良, 刘云明, 等. U3Si2燃料芯块的制备与显微组织研究. 核动力工程, 2019, 40(1): 56
    [20] Cappia F, Harp J M. Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications. J Nucl Mater, 2019, 518: 62 doi: 10.1016/j.jnucmat.2019.02.047
    [21] White J T, Travis A W, Dunwoody J T, et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms. J Nucl Mater, 2017, 495: 463 doi: 10.1016/j.jnucmat.2017.08.041
    [22] Terrani K A, Kiggans J O, Katoh Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels. J Nucl Mater, 2012, 426(1-3): 268 doi: 10.1016/j.jnucmat.2012.03.049
    [23] Terrani K A, Trammell M P, Kiggans J O, et al. UN TRISO compaction in SiC for FCM fuel irradiations. U. S. Department of Energy Office of Scientific and Technical Information (2016-11-01) [2020-03-10]. https://www.osti.gov/servlets/purl/1335363
    [24] Morris R N, Pappano P J. Estimation of maximum coated particle fuel compact packing fraction. J Nucl Mater, 2007, 361: 18 doi: 10.1016/j.jnucmat.2006.10.017
    [25] Lee H G, Kim D, Lee S J, et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites. Nucl Eng Des, 2017, 311: 9 doi: 10.1016/j.nucengdes.2016.11.005
  • 加载中
图(10)
计量
  • 文章访问数:  1526
  • HTML全文浏览量:  228
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回