银包覆过渡族金属硒化物的制备及银基复合材料性能

施琴 朱和军

施琴, 朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能[J]. 粉末冶金技术, 2023, 41(6): 536-542. doi: 10.19591/j.cnki.cn11-1974/tf.2020030013
引用本文: 施琴, 朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能[J]. 粉末冶金技术, 2023, 41(6): 536-542. doi: 10.19591/j.cnki.cn11-1974/tf.2020030013
SHI Qin, ZHU Hejun. Preparation of silver-coated transition metal selenides and properties of silver-based composites[J]. Powder Metallurgy Technology, 2023, 41(6): 536-542. doi: 10.19591/j.cnki.cn11-1974/tf.2020030013
Citation: SHI Qin, ZHU Hejun. Preparation of silver-coated transition metal selenides and properties of silver-based composites[J]. Powder Metallurgy Technology, 2023, 41(6): 536-542. doi: 10.19591/j.cnki.cn11-1974/tf.2020030013

银包覆过渡族金属硒化物的制备及银基复合材料性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020030013
详细信息
    通讯作者:

    E-mail: hehe666777@163.com

  • 中图分类号: TG174.44; TF122

Preparation of silver-coated transition metal selenides and properties of silver-based composites

More Information
  • 摘要: 为了提升银基复合材料中各相与基体之间的界面结合强度,改善材料性能,采用化学还原制备银包覆NbSe2及银包覆Ti0.09Nb0.91Se2颗粒,并通过粉末冶金法制备了Ag基复合材料。结果表明:银颗粒均匀分布在过渡族金属硒化物表面,包覆效果好。银包覆处理增加了过渡族金属硒化物与金属基体Ag之间的接触,改善了Ag与过渡族金属硒化物之间的润湿性,减小了Ag与过渡族金属颗粒之间的排斥力,使得过渡族金属硒化物在Ag基复合材料发生分解的可能性大大降低,提高了复合材料的力学性能,增强了过渡族金属硒化物与基体之间的界面结合强度。与含有NbSe2的银基复合材料相比,含有Ag包覆过渡族金属硒化物的银基复合材料的摩擦性能略有下降。
  • 图  1  Ag/NbSe2及Ag/Ti0.09Nb0.91Se2颗粒制作流程

    Figure  1.  Production process of the silver-coated NbSe2 and Ti0.09Nb0.91Se2 particles

    图  2  Ag/NbSe2和Ag/Ti0.09Nb0.91Se2扫描电子显微形貌和能谱分析:(a)Ag/NbSe2显微形貌;(b)Ag/NbSe2能谱分析;(c)Ag/Ti0.09Nb0.91Se2显微形貌;(d)Ag/Ti0.09Nb0.91Se2能谱分析

    Figure  2.  SEM images and EDS analysis of the Ag/NbSe2 and Ag/Ti0.09Nb0.91Se2: (a) SEM image of Ag/NbSe2; (b) EDS analysis of Ag/NbSe2; (c) SEM image of Ag/Ti0.09Nb0.91Se2; (d) EDS analysis of Ag/Ti0.09Nb0.91Se2

    图  3  银基复合材料的X射线衍射图谱

    Figure  3.  XRD patterns of the Ag-based composites

    图  4  试样Sa1、Sa2和Sa3的背散射电子形貌和试样Sa1元素面扫描分布:(a)Sa1;(b)Sa2;(c)Sa3;(d)Ag;(e)Cr;(f)Se;(g)Nb

    Figure  4.  Back scattered patterns of sample Sa1, Sa2, and Sa3 and the mapping scanning patterns of sample Sa1: (a) Sa1; (b) Sa2; (c) Sa3; (d) Ag; (e) Cr; (f) Se; (g) Nb

    图  5  试样Sa1和Sa3的X射线光电子能谱分析

    Figure  5.  XPS images of the sample Sa1 and Sa3.

    图  6  试样摩擦学性能表征

    Figure  6.  Tribological properties of the samples

    图  7  试样磨痕三维轮廓表征:(a)Sa1;(b)Sa2;(c)Sa3

    Figure  7.  3D profile characterization of the sample wear scars: (a) Sa1; (b) Sa2; (c) Sa3

    表  1  化学镀工艺中各种溶液的组成

    Table  1.   Composition of the various solution in the electroless plating process

    溶液名称 药品名称 用量 配置方法
    还原溶液C2H5OH150 mL在C2H5OH中滴入HCHO,同时加入NaOH,
    持续搅拌直到溶液变清澈即可。
    HCHO10 mL
    NaOH10 g
    敏化溶液SnCl212 g将SnCl2加入HCL中,保持搅拌至完全溶解,再加入到
    去离子水中,保持1 h,即可得到敏化溶液。
    HCL16 mL
    去离子水200 mL
    银氨溶液AgNO39 g将AgNO3溶于去离子水中,搅拌过程中缓慢加入NH3·H2O,
    直至NH3·H2O全部加入即可。
    NH3·H2O75 mL
    去离子水200 mL
    下载: 导出CSV

    表  2  Ag基复合材料试样化学成分(质量分数)

    Table  2.   Chemical compositions of the silver-based composites %

    试样银粉铬粉Ag/Ti0.09Nb0.91Se2Ag/NbSe2纯NbSe2
    Sa175101500
    Sa275100150
    Sa375100015
    下载: 导出CSV

    表  3  Ag基复合材料密度和力学性能

    Table  3.   Density and mechanical properties of the silver-based composites

    试样密度 / (g·cm−3)孔隙度 / %微硬度,HV断裂强度 / MPa
    Sa18.127.87211162
    Sa28.018.07204159
    Sa37.898.19197146
    下载: 导出CSV
  • [1] Shi Q, Tang H, Zhu H, et al. Synthesis and tribological properties of Ti-doped NbSe2 nanoparticles. Chalcogenide Lett, 2014, 11(5): 199
    [2] Yuan M, Zhu H J, Peng H H, et al. Synthesis and tribological properties of ferrous based composites containing TiSe2 particles. Powder Metall Technol, 2016, 34(2): 106

    袁梦, 朱和军, 彭红红, 等. 含纳米TiSe2的铁基复合材料的制备及摩擦学性能研究. 粉末冶金技术, 2016, 34(2): 106
    [3] Shi Q, Yang J, Peng W X, et al. Synergetic effect of NbSe2 and Cr2Nb on the tribological and electrical behavior of Cu-based electrical contact composites. RSC Adv, 2015, 5(122): 100472 doi: 10.1039/C5RA17786C
    [4] Chen S. Preparation of NbS 2xSe 2(1‒x) and Tribology Property of Copper Based Composite Mixed NbS 2xSe 2(1‒x) [Dissertation]. Zhenjiang: Jiangsu University, 2014

    陈帅. NbS2 xSe2(1‒ x)材料制备及其Cu基复合材料摩擦学性能研究[学位论文]. 镇江: 江苏大学, 2014
    [5] Shi Q. Research on Electrical Contact Composites Containing Transition Metal Selenides [Dissertation]. Zhenjiang: Jiangsu University, 2017

    施琴. 过渡族金属硒化物电接触复合材料的研究[学位论文]. 镇江: 江苏大学, 2017
    [6] Anand T J S, Shariza S. A study on molybdenum sulphoselenide (MoS x Se2− x , 0≤ x≤2) thin films: Growth from solution and its properties. Electrochim Acta, 2012, 81: 64 doi: 10.1016/j.electacta.2012.07.077
    [7] Rossnagel K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J Phys Condens Matter, 2011, 23(21): 213001 doi: 10.1088/0953-8984/23/21/213001
    [8] Bhatt R, Basu R, Bhattacharya S, et al. Low temperature thermoelectric properties of Cu intercalated TiSe2: a charge density wave material. Appl Phys A, 2013, 111(2): 465 doi: 10.1007/s00339-012-7536-8
    [9] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, 253(7-8): 699 doi: 10.1016/S0043-1648(02)00038-8
    [10] Cui G, Bi Q, Zhu S, et al. Tribological properties of bronze-graphite composites under sea water condition. Tribol Int, 2012, 53(9): 76
    [11] Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363 doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008

    魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363 doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
    [12] Xiong X, Chen J, Yao P P, et al. Effect of MoS2 on the sintering behaviors and mechanical properties of iron-based friction materials. Powder Metall Technol, 2006, 24(3): 182

    熊翔, 陈洁, 姚屏萍, 等. MoS2对铁基摩擦材料烧结行为及力学性能的影响. 粉末冶金技术, 2006, 24(3): 182
    [13] Song J, Xu L, Xing R, et al. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens Actuators B, 2013, 182: 675 doi: 10.1016/j.snb.2013.03.069
    [14] Chee S S, Lee J H. Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. J Mater Chem C, 2014, 2(27): 5372 doi: 10.1039/C4TC00509K
    [15] Li Y, Liu R, Zhang J, et al. Fabrication and microstructure of W‒Cu composites prepared from Ag-coated Cu powders by electroless plating. Surf Coat Technol, 2019, 361: 302 doi: 10.1016/j.surfcoat.2019.01.030
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1573
  • HTML全文浏览量:  31
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回