机械涂覆法制备氧化锆球Ni涂层

陈立甲 陈海彬

陈立甲, 陈海彬. 机械涂覆法制备氧化锆球Ni涂层[J]. 粉末冶金技术, 2023, 41(2): 181-186. doi: 10.19591/j.cnki.cn11-1974/tf.2020040003
引用本文: 陈立甲, 陈海彬. 机械涂覆法制备氧化锆球Ni涂层[J]. 粉末冶金技术, 2023, 41(2): 181-186. doi: 10.19591/j.cnki.cn11-1974/tf.2020040003
CHEN Lijia, CHEN Haibin. Preparation of Ni coatings on zirconia balls by mechanical coating technology[J]. Powder Metallurgy Technology, 2023, 41(2): 181-186. doi: 10.19591/j.cnki.cn11-1974/tf.2020040003
Citation: CHEN Lijia, CHEN Haibin. Preparation of Ni coatings on zirconia balls by mechanical coating technology[J]. Powder Metallurgy Technology, 2023, 41(2): 181-186. doi: 10.19591/j.cnki.cn11-1974/tf.2020040003

机械涂覆法制备氧化锆球Ni涂层

doi: 10.19591/j.cnki.cn11-1974/tf.2020040003
基金项目: 东莞市社会科技发展资助项目(2019507140843);东莞市科技特派员项目(20221800500182)
详细信息
    通讯作者:

    E-mail: chenlj67@163.com

  • 中图分类号: TQ131.1

Preparation of Ni coatings on zirconia balls by mechanical coating technology

More Information
  • 摘要: 为了研究转速和时间对机械涂覆法制备Ni涂层的影响,以金属Ni粉为涂覆原料、氧化锆(ZrO2)陶瓷球为涂覆基底制备Ni涂层。通过涂覆后陶瓷球的增重量来表征涂层的厚度,采用扫描电子显微镜和X射线衍射分析表征涂层的结构和成份。结果表明,随着转速提高,球磨初期涂层的厚度逐渐增加,持续球磨,涂层厚度反而开始降低。转速240 r∙min‒1、球磨15 h的涂覆效果最佳,涂层平均厚度约为20 μm。Ni涂层厚度经历了增厚和减薄两个阶段,转速会影响二者出现的进度,适当提高转速利于涂层加厚,提高工艺效率,但过高的转速不利涂层形成。
  • 图  1  磨球增重率与球磨时间和转速关系

    Figure  1.  Influence of rotation speed and milling time on the weight increase rate of Ni coatings prepared by MCT

    图  2  转速240 r·min‒1、球磨15 h后ZrO2球断面形貌

    Figure  2.  Fracture appearance of the ZrO2 balls after milling at 240 r·min‒1 for 15 h

    图  3  球磨ZrO2球表面和断面形貌: (a)转速210 r·min‒1,20 h表面形貌;(b)转速210 r·min‒1,20 h断面形貌;(c)转速240 r·min‒1,15 h表面形貌;(d)转速240 r·min‒1,15 h断面形貌;(e)转速270 r·min‒1,5 h表面形貌;(f)转速270 r·min‒1,5 h断面形貌

    Figure  3.  Surface and cross section SEM images of the ZrO2 balls after milling: (a) surface image at 210 r·min‒1 for 20 h; (b) cross section image at 210 r·min‒1 for 20 h; (c) surface image at 240 r·min‒1 for 15 h; (d) cross section image at 240 r·min‒1 for 15 h; (e) surface image at 270 r·min‒1 for 5 h; (f) cross section image at 270 r·min‒1 for 5 h

    图  4  不同转速磨球运动轨迹模拟

    Figure  4.  Simulation of milling balls motion in different speeds

    图  5  球磨前后及氧化烧结后ZrO2球表面颜色

    Figure  5.  Surface colors of the ZrO2 balls before milling, after milling, and after oxidation treatment

    图  6  球磨后(a)及800 ℃烧结后(b)ZrO2球表面显微形貌及能谱分析

    Figure  6.  SEM images and energy spectrum analysis of the ZrO2 balls surface after ball milling (a) and sintering at 800 ℃ (b)

    图  7  球磨后及800 ℃烧结后ZrO2球表面X射线衍射图谱

    Figure  7.  X-ray diffraction patterns of the ZrO2 balls after ball milling and sintering at 800 ℃

    表  1  实验原料及参数

    Table  1.   Raw materials and parameters in experimental

    材料粒度密度 / (g·cm‒3)纯度 / %
    ZrO2ϕ1 mm6.0>95.0
    Ni粉200目8.9>99.5
    下载: 导出CSV
  • [1] Farahbakhsh I, Zakeri A, Manikandan P, et al. Effect of mechanical alloying parameters on the formation of Ni–Cu solid solution coating on the Ni balls. Jpn J Appl Phys, 2011, 50(1S2): 01BE06 doi: 10.1143/JJAP.50.01BJ06
    [2] Chen L J, Zha W S, Wu K X, et al. Application of mechanical milling in fabrication of surface coatings. Powder Metall Technol, 2014, 32(1): 64 doi: 10.3969/j.issn.1001-3784.2014.01.012

    陈立甲, 查五生, 吴开霞, 等. 机械球磨方法在表面薄膜涂层制备中的应用. 粉末冶金技术, 2014, 32(1): 64 doi: 10.3969/j.issn.1001-3784.2014.01.012
    [3] Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315 doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013

    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315 doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
    [4] Qi B S, Wang Z, Xu Y, et al. The Cr‒Al alloy coating on grinding balls surface by mechanical alloying. Heat Treat Met, 2005, 30(4): 59 doi: 10.3969/j.issn.0254-6051.2005.04.018

    齐宝森, 王志, 徐英, 等. 机械合金化制备磨球表面铬铝合金涂层. 金属热处理, 2005, 30(4): 59 doi: 10.3969/j.issn.0254-6051.2005.04.018
    [5] Farahbakhsh I, Zakeri A, Manikandan P, et al. Evaluation of nanostructured coating layers formed on Ni balls during mechanical alloying of Cu powder. Appl Surf Sci, 2011, 257(7): 2830 doi: 10.1016/j.apsusc.2010.10.071
    [6] Duan C Y. Investigation on Preparation of High Nitrogen Stainless Steels and High Stainless Steel Coatings by Mechanical Alloying [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016

    段翠媛. 机械合金化制备高氮不锈钢及高氮不锈钢涂层的研究[学位论文]. 南京: 南京航空航天大学, 2016
    [7] Yoshida H, Lu Y, Nakayama H, et al. Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity. J Alloys Compd, 2009, 475(1): 383
    [8] Lu Y, Hao L, Toh K, et al. Fabrication of TiO2/Cu composite photocatalyst thin film by 2-step mechanical coating technique and its photocatalytic activity. Adv Mater Res, 2012, 415: 1942
    [9] Lu Y, Guan S J, Hao L, et al. Review on the photocatalyst coatings of TiO2: Fabrication by mechanical coating technique and its application. Coatings, 2015, 5(3): 425 doi: 10.3390/coatings5030425
    [10] Hao L, Lu Y, Asanuma H, et al. The influence of the processing parameters on the formation of iron thin films on alumina balls by mechanical coating technique. J Mater Process Technol, 2012, 212(5): 1169 doi: 10.1016/j.jmatprotec.2012.01.001
    [11] Hao L, Lu Y, Sato H, et al. Fabrication of zinc coatings on alumina balls from zinc powder by mechanical coating technique and the process analysis. Powder Technol, 2012, 228: 377 doi: 10.1016/j.powtec.2012.05.056
    [12] Liu Y H, Ye J F, Zhang H X, et al. Research progress on photocatalytic performance of TiO2 modified by nickel. China Resour Compr Util, 2012, 30(10): 40 doi: 10.3969/j.issn.1008-9500.2012.10.022

    刘艳花, 叶姣凤, 张红霞, 等. Ni改性TiO2光催化性能研究进展. 中国资源综合利用, 2012, 30(10): 40 doi: 10.3969/j.issn.1008-9500.2012.10.022
    [13] Li D Y, Zhang W T, Zhang C. Research progress in improving the photocatalytic properties of TiO2 materials by doping with different metals. Mater Rep, 2019, 33(23): 3900 doi: 10.11896/cldb.19020021

    李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展. 材料导报, 2019, 33(23): 3900 doi: 10.11896/cldb.19020021
    [14] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1): 1
    [15] Hao L, Lu Y, Sato H, et al. Influence of metal properties on the formation and evolution of metal coatings during mechanical coating. Metall Mater Trans A, 2013, 44A(6): 2717
    [16] Wu K X, Zha W S, Tang X X, et al. Study on the preparation process of Ti coatings on ZrO2 balls by mechanical milling coating technology. Powder Metall Technol, 2019, 37(6): 444 doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.007

    吴开霞, 查五生, 唐鑫鑫, 等. 氧化锆球体表面机械球磨涂覆钛涂层工艺研究. 粉末冶金技术, 2019, 37(6): 444 doi: 10.19591/j.cnki.cn11-1974/tf.2019.06.007
    [17] Wang L, Hou L F, Wei Y H, et al. Investigation on Al alloy layer formation of pure copper surface subjected to surface mechanical attrition treatment. Hot Working Technol, 2013, 42(24): 161

    王磊, 侯利锋, 卫英慧, 等. 纯铜在表面机械研磨辅助下形成铝合金层的研究. 热加工工艺, 2013, 42(24): 161
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  58
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回