超细钼铜复合粉体及细晶钼铜合金的制备

王敬飞 卜春阳 何凯 吉鑫鹏 张和 张国华 周国治

王敬飞, 卜春阳, 何凯, 吉鑫鹏, 张和, 张国华, 周国治. 超细钼铜复合粉体及细晶钼铜合金的制备[J]. 粉末冶金技术, 2021, 39(1): 24-32. doi: 10.19591/j.cnki.cn11-1974/tf.2020040008
引用本文: 王敬飞, 卜春阳, 何凯, 吉鑫鹏, 张和, 张国华, 周国治. 超细钼铜复合粉体及细晶钼铜合金的制备[J]. 粉末冶金技术, 2021, 39(1): 24-32. doi: 10.19591/j.cnki.cn11-1974/tf.2020040008
WANG Jing-Fei, BU Chun-Yang, HE Kai, JI Xin-Peng, ZHANG He, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultra-fine molybdenum‒copper composite powders and fine-grained molybdenum‒copper alloys[J]. Powder Metallurgy Technology, 2021, 39(1): 24-32. doi: 10.19591/j.cnki.cn11-1974/tf.2020040008
Citation: WANG Jing-Fei, BU Chun-Yang, HE Kai, JI Xin-Peng, ZHANG He, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultra-fine molybdenum‒copper composite powders and fine-grained molybdenum‒copper alloys[J]. Powder Metallurgy Technology, 2021, 39(1): 24-32. doi: 10.19591/j.cnki.cn11-1974/tf.2020040008

超细钼铜复合粉体及细晶钼铜合金的制备

doi: 10.19591/j.cnki.cn11-1974/tf.2020040008
基金项目: 国家自然科学基金资助项目(51734002)
详细信息
    通讯作者:

    E-mail: ghzhang0914@ustb.edu.cn

  • 中图分类号: TF8

Preparation of ultra-fine molybdenum‒copper composite powders and fine-grained molybdenum‒copper alloys

More Information
  • 摘要: 采用“缺碳预还原+氢气深脱氧”方法制备了不同Cu含量(5%、20%、40%,质量分数)的超细Mo–Cu复合粉末。通过高温煅烧钼酸铵和硝酸铜混合物制备了MoO3和CuO复合氧化物,再利用炭黑预还原脱除煅烧产物(CuMoO4–MoO3)中绝大部分氧的方法制备了含有少量MoO2的超细预还原Mo–Cu复合粉体;少量MoO2的存在可以极大降低预还原产物中碳的残留;最后,经氢还原脱除残留的氧制备得到超细、高纯度Mo–Cu复合粉体,粉体粒度约为200 nm。以Mo–Cu复合粉体为原料,经过压坯和烧结制备得到细晶Mo–Cu合金。结果表明,经过1200 ℃烧结后,随着Cu质量分数由5%增加到20%,合金相对密度由96.3%增加到98.5%,且Mo、Cu两相分布均匀。Mo–Cu合金硬度随Cu含量的增加而先增加后降低,这是由合金相对密度和铜含量对硬度的影响不同所导致的。随着Cu质量分数由5%增加到40%,Mo–Cu合金的热导率由48.5 W·m−1·K−1增加到187.2 W·m−1·K−1,电导率由18.79% IACS增加到49.48% IACS。
  • 图  1  Mo–20%Cu不同阶段反应产物的X射线衍射分析:(a)C/MoO3摩尔比1.9和2.0,1050 ℃碳热还原;(b)C/MoO3摩尔比1.9,750 ℃氢还原

    Figure  1.  XRD patterns of Mo–20%Cu powders obtained at different stages: (a) carbothermal reduction at 1050 ℃ under the C/MoO3 molar ratios of 1.9 and 2.0; (b) hydrogen reduction at 750 ℃ under the C/MoO3 molar ratio of 1.9

    图  2  C/MoO3摩尔比为1.9时不同Cu质量分数、1050 ℃碳还原后粉末的场发射扫描电镜形貌:(a)5%;(b)10%[15];(c)20%;(d)40%

    Figure  2.  FE-SEM morphology of the powders after the carbon reduction at 1050 ℃ with the different Cu mass fractions at the C/MoO3 molar ratios of 1.9: (a) 5%; (b) 10%[15]; (c) 20%; (d) 40%

    图  3  不同Cu质量分数、750 ℃氢还原后粉末的场发射扫描电镜形貌:(a)5%;(b)10%[15];(c)20%;(d)40%

    Figure  3.  FE-SEM morphology of the powders after the hydrogen reduction at 750 ℃ with different Cu mass fractions: (a) 5%; (b) 10%[15]; (c) 20%; (d) 40%

    图  4  不同Cu质量分数Mo–Cu合金在1150 ℃和1200 ℃烧结后的横截面微观形貌:(a)5%,1150 ℃;(b)5%,1200 ℃;(c)10%[15],1150 ℃;(d)10%[15],1200 ℃;(e)20%,1150 ℃;(f)20%,1200 ℃;(g)40%,1150 ℃;(h)40%,1200 ℃

    Figure  4.  Cross-section micro-morphology of the Mo–Cu alloys with the different Cu mass fractions after sintering at 1150 ℃ and 1200 ℃: (a) 5%, 1150 ℃; (b) 5%, 1200 ℃; (c) 10%[15], 1150 ℃; (d) 10%[15], 1200 ℃; (e) 20%, 1150 ℃; (f) 20%, 1200 ℃; (g) 40%, 1150 ℃; (h) 40%, 1200 ℃

    图  5  不同Cu含量Mo–Cu合金在1150 ℃和1200 ℃烧结后的断口形貌:(a)5%,1150 ℃;(b)5%,1200 ℃;(c)10%[15],1150 ℃;(d)10%[15],1200 ℃;(e)20%,1150 ℃;(f)20%,1200 ℃;(g)40%,1150 ℃;(h)40%,1200 ℃

    Figure  5.  Fracture morphology of the Mo–Cu alloys with the different Cu mass fractions after sintering at 1150 ℃ and 1200 ℃: (a) 5%, 1150 ℃; (b) 5%, 1200 ℃; (c) 10%[15], 1150 ℃; (d) 10%[15], 1200 ℃; (e) 20%, 1150 ℃; (f) 20%, 1200 ℃; (g) 40%, 1150 ℃; (h) 40%, 1200 ℃

    图  6  1200 ℃烧结后不同Cu含量的Mo–Cu合金硬度

    Figure  6.  Hardness of the Mo–Cu alloys with the different Cu contents after sintering at 1200 ℃

    图  7  1200 ℃烧结后不同Cu含量的Mo–Cu合金电导率

    Figure  7.  Conductivity of the Mo–Cu alloy with the different Cu contents after sintering at 1200 ℃

    图  8  1200 ℃烧结后不同Cu含量的Mo–Cu合金热导率

    Figure  8.  Thermal conductivity of the Mo–Cu alloys with the different Cu contents after sintering at 1200 ℃

    表  1  不同Cu质量分数Mo–Cu复合粉末的残余碳含量(质量分数)

    Table  1.   Residual carbon mass fraction of Mo–Cu composite powders with the different Cu mass fractions

    Cu质量分数 / %C质量分数 / %
    50.026
    200.023
    400.021
    下载: 导出CSV

    表  2  不同Cu含量Mo–Cu复合粉末的平均晶粒尺寸

    Table  2.   Average grain size of the Mo–Cu composite powders with the different Cu mass fractions

    Cu质量分数 / %温度 / ℃晶粒尺寸 / nm
    5105052
    75081
    10105073
    750102
    20105096
    750153
    401050175
    750236
    下载: 导出CSV

    表  3  不同Cu含量的Mo–Cu合金在1150 ℃和1200 ℃烧结后的相对密度

    Table  3.   Relative densities of the Mo–Cu alloys with the different Cu mass fractions after sintering at 1150 ℃ and 1200 ℃

    Cu质量分数 / %烧结温度 / ℃相对密度 / %
    5115094.8
    120096.3
    20115096.0
    120098.5
    40115095.2
    120097.9
    下载: 导出CSV

    表  4  不同Cu含量的Mo–Cu合金在1150 ℃和1200 ℃烧结后的收缩率

    Table  4.   Shrinkage of the Mo–Cu alloys with the different Cu mass fractions after sintering at 1150 ℃ and 1200 ℃

    合金烧结温度 / ℃径向收缩率 / %轴向收缩率 / %
    Mo–5Cu115013.813.5
    120015.114.9
    Mo–20Cu115015.114.4
    120016.215.5
    Mo–40Cu115014.914.1
    120015.815.3
    下载: 导出CSV

    表  5  不同Cu含量Mo–Cu合金中钼颗粒在1150 ℃和1200 ℃烧结后的平均晶粒尺寸

    Table  5.   Average grain size of the Mo–Cu alloys with different Cu mass fractions after sintering at 1150 ℃ and 1200 ℃

    Cu质量分数 / %烧结温度 / ℃平均晶粒尺寸 / μm
    511501.8
    12001.9
    2011501.5
    12002.3
    4011502.1
    12001.7
    下载: 导出CSV

    表  6  Mo–Cu合金电导率

    Table  6.   Electrical conductivity of the Mo–Cu alloys

    Mo–Cu合金烧结温度 / ℃电导率 / % IACS
    Mo–5Cu120018.79
    Mo–20Cu120033.28
    Mo–40Cu120049.48
    Mo–20Cu[26]100024.80
    Mo–25Cu[5]120038.60
    下载: 导出CSV
  • [1] Ali Z A, Drury O B, Cunningham M F, et al. Fabrication of Mo/Cu multilayer and bilayer transition edge sensors. IEEE Trans Appl Supercond, 2005, 15(2): 526 doi: 10.1109/TASC.2005.849897
    [2] Sun A, Wang D, Wu Z, et al. Synthesis of ultra-fine Mo–Cu nanocomposites by coreduction of mechanical-activated CuMoO4–MoO3 mixtures at low temperature. J Alloys Compd, 2010, 505(2): 588 doi: 10.1016/j.jallcom.2010.06.080
    [3] Johnson J L, German R M. Powder metallurgy processing of Mo–Cu for thermal management applications. Int J Powder Metall, 1999, 35(8): 39
    [4] Yao J T, Li C J, Li Y, et al. Relationships between the properties and microstructure of Mo–Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton. Mater Des, 2015, 88: 774 doi: 10.1016/j.matdes.2015.09.062
    [5] Wang D, Dong X, Zhou P, et al. The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts. Int J Refract Met Hard Mater, 2014, 42: 240 doi: 10.1016/j.ijrmhm.2013.09.012
    [6] Chwa S O, Klein D, Liao H, et al. Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu–Mo composite coatings. Surf Coat Technol, 2006, 200(20): 5682
    [7] Belay O V, Kiselev S P. Molecular dynamics simulation of deformation and fracture of a “copper-molybdenum” nanocomposite plate under uniaxial tension. Phys Mesomech, 2011, 14(3): 145
    [8] Wahl K J, Seitzman L E, Bolster R N, et al. Ion-beam deposited Cu–Mo coatings as high temperature solid lubricants. Surf Coat Technol, 1997, 89(3): 245 doi: 10.1016/S0257-8972(96)02900-3
    [9] Jiang Z W. Study on Electroless Cu Plating of Mo Powders and Sintering Process[Dissertation]. Zhengzhou: Zhengzhou University, 2015

    姜智文. 化学镀制备Mo–20Cu复合粉末及坯体烧结性能的研究[学位论文]. 郑州: 郑州大学, 2015
    [10] Song P, Cheng J, Wan L, et al. Preparation and characterization of Mo–15Cu superfine powders by a gelatification-reduction process. J Alloys Compd, 2009, 476(1): 226
    [11] Chen Y B, Fan J L, Liu T, et al. Fabrication of fine-grained Mo–Cu alloy. Chin J Nonferrous Met, 2008, 18(6): 1039 doi: 10.3321/j.issn:1004-0609.2008.06.014

    陈玉柏, 范景莲, 刘涛, 等. 细晶钼铜合金的制备. 中国有色金属学报, 2008, 18(6): 1039 doi: 10.3321/j.issn:1004-0609.2008.06.014
    [12] Sun G D, Wang K F, Song C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. Int J Refract Met Hard Mater, 2019, 78: 100 doi: 10.1016/j.ijrmhm.2018.08.013
    [13] Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2020, 72: 347 doi: 10.1007/s11837-019-03445-4
    [14] Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 doi: 10.1016/j.ijrmhm.2018.04.002
    [15] Ji X P, Cao W C, Bu C Y, et al. A new route for preparing Mo–10wt.%Cu composite compacts. Int J Refract Met Hard Mater, 2019, 81: 196 doi: 10.1016/j.ijrmhm.2019.03.008
    [16] Utigard T. Oxidation mechanism of molybdenite concentrate. Metall Mater Trans B, 2009, 40(4): 490 doi: 10.1007/s11663-009-9245-z
    [17] Deevi S C. Self-propagating high-temperature synthesis of molybdenum disilicide. J Mater Sci, 1991, 26(12): 3343 doi: 10.1007/BF01124683
    [18] Schulmeyer W V, Ortner H M. Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater, 2002, 20(4): 261 doi: 10.1016/S0263-4368(02)00029-X
    [19] Enneti R K. Rate control mechanism for the hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater, 2012, 33: 122 doi: 10.1016/j.ijrmhm.2012.03.006
    [20] Dang J, Zhang G H, Wang L, et al. Study on hydrogen reduction of Mo4O11. Int J Refract Met Hard Mater, 2015, 51: 275 doi: 10.1016/j.ijrmhm.2015.05.001
    [21] Ressler T, Jentoft R E, Wienold J, et al. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J Phys Chem B, 2000, 104(27): 6360 doi: 10.1021/jp000690t
    [22] Majumdar S, Sharma I G, Samajdar I, et al. Kinetic studies on hydrogen reduction of MoO3 and morphological analysis of reduced Mo powder. Metall Mater Trans B, 2008, 39: 431 doi: 10.1007/s11663-008-9152-8
    [23] Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe–Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104

    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁–铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104
    [24] Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42

    卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42
    [25] Wang D F, Ma B, Ma L C, et al. Effect of WC grain size on the microstructure and mechanical properties of HVOF-sprayed WC–10Co4Cr coatings. Powder Metall Technol, 2019, 37(6): 434

    王大锋, 马冰, 马良超, 等. WC颗粒尺寸对超音速火焰喷涂WC–10Co4Cr涂层组织及力学性能的影响. 粉末冶金技术, 2019, 37(6): 434
    [26] Kim D G, Kim G S, Oh S T, et al. The initial stage of sintering for the W–Cu nanocomposite powder prepared from W–CuO mixture. Mater Lett, 2004, 58(5): 578 doi: 10.1016/j.matlet.2003.07.044
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  126
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回