处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响

邓颖 吴引江 南海娟 梁永仁 孟强

邓颖, 吴引江, 南海娟, 梁永仁, 孟强. 处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响[J]. 粉末冶金技术, 2022, 40(3): 226-231. doi: 10.19591/j.cnki.cn11-1974/tf.2020040010
引用本文: 邓颖, 吴引江, 南海娟, 梁永仁, 孟强. 处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响[J]. 粉末冶金技术, 2022, 40(3): 226-231. doi: 10.19591/j.cnki.cn11-1974/tf.2020040010
DENG Ying, WU Yin-jiang, NAN Hai-juan, LIANG Yong-ren, MENG Qiang. Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts[J]. Powder Metallurgy Technology, 2022, 40(3): 226-231. doi: 10.19591/j.cnki.cn11-1974/tf.2020040010
Citation: DENG Ying, WU Yin-jiang, NAN Hai-juan, LIANG Yong-ren, MENG Qiang. Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts[J]. Powder Metallurgy Technology, 2022, 40(3): 226-231. doi: 10.19591/j.cnki.cn11-1974/tf.2020040010

处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020040010
详细信息
    通讯作者:

    E-mail: 121553012@qq.com

  • 中图分类号: TF124

Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts

More Information
  • 摘要: 为了提高Fe–Al合金粉末的压制成形性和生坯压溃强度,分析了氢气还原和真空退火工艺对Fe–Al合金粉末形貌和性能的影响,研究了原始粉末和经过处理后粉末所制管坯的成形率。结果发现,经氢气还原和真空退火处理后,粉末形貌变化不大,粉末性能提高,生坯压溃强度增强,成形性得到改善;尤其是经真空退火粉末的性能得到极大提高,氧的质量分数由0.5%低到0.2%,松装密度由1.82 g·cm−3降低到1.64 g·cm−3,显微硬度由HV 260降低到HV 158,压缩比由63%降低到56%,生坯压溃强度由2.0 MPa提高到2.7 MPa,粉末成形性得到极大改善。在批量化压制长管坯时,对原始粉末预先进行真空退火处理,长管生坯数量成品率由50%提高至100%,产品成本降低。
  • 图  1  Fe–Al滤管装配图

    Figure  1.  Schematic diagram of Fe–Al filter

    图  2  长管生坯结构示意图

    Figure  2.  Schematic diagram of the long green compact

    图  4  不同工艺处理后Fe–Al合金粉末氧的质量分数(a)与松装密度(b)

    Figure  4.  Oxygen mass fraction (a) and the apparent density (b) of the Fe–Al alloy powders by the different treatment processes

    图  5  不同工艺处理后Fe–Al合金粉末显微硬度(a)与压缩比(b)

    Figure  5.  Microhardness (a) and the compression ratio (b) of the Fe–Al alloy powders by the different treatment processes

    图  6  不同工艺处理后Fe–Al合金粉末管坯孔隙度(a)与压溃强度(b)

    Figure  6.  Porosity (a) and the crushing strength (b) of the green compacts by the different treatment processes

    图  7  管体裂纹

    Figure  7.  Cracks of the green compacts

    图  8  法兰棱角掉粉

    Figure  8.  Powder desquamate from the flanges edge

    图  9  法兰断裂

    Figure  9.  Fractures of the flanges

    图  10  管底断裂

    Figure  10.  Fractures from the bottom

    图  11  长管坯实物图

    Figure  11.  Product of the long green compacts

    表  1  烧结Fe–Al合金多孔材料性能

    Table  1.   Properties of the sintered Fe–Al alloy porous materials

    试样
    编号
    压溃强度 / MPa透气度 / (m3·m−2·h−1·kPa−1)最大孔径 / μm平均孔径 / μm
    1#521642015
    2#571581813
    3#621501510
    陶瓷
    滤管
    291351711
    下载: 导出CSV

    表  2  粉末长样品管坯数量成品率

    Table  2.   Quantity qualified rate of the long green compacts

    试样编号生产数量 / 支合格数量 / 支成品率 / %成形性
    1#-C10550管坯成形较差,管身微裂纹,法兰/管底断裂
    2#-C10880管坯成形良好,管身无裂纹,法兰/管底棱角掉粉
    3#-C1010100管坯成形极好,管身无裂纹,法兰/管底棱角无掉粉
    下载: 导出CSV
  • [1] Cui C J, Wen Y G, Yang M, et al. Research progress of Fe–Al intermetallic compound. Mater Protect, 2017, 50(9): 82

    崔春娟, 问亚岗, 杨猛, 等. Fe–Al金属间化合物的研究进展. 材料保护, 2017, 50(9): 82
    [2] Hammel E C, Ighodaro O L R, Okoli O I. Processing and properties of advanced porous ceramics: An application based review. Ceram Int, 2014, 40(10): 15351 doi: 10.1016/j.ceramint.2014.06.095
    [3] Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci, 2001, 46(6): 559 doi: 10.1016/S0079-6425(00)00002-5
    [4] Jiang Y, He Y H, Liu C T. Review of porous intermetallic compounds by reactive synthesis of elemental powders. Intermetallics, 2018, 93: 217 doi: 10.1016/j.intermet.2017.06.003
    [5] Wang Q B, Tang H P, Xi Z P, et al. The studies progress of the metal porous material using in the gasification technology. Rare Met Mater Eng, 2006, 35(Suppl 2): 448

    汪强兵, 汤慧平, 奚正平, 等. 煤气化技术用金属多孔材料研究进展. 稀有金属材料与工程, 2006, 35(增刊2): 448
    [6] Gao H Y, He Y H, Zou J, et al. Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis. Trans Nonferrous Met Soc China, 2012, 22(9): 2179 doi: 10.1016/S1003-6326(11)61446-5
    [7] Amaya M, Espinosa-Medina M A, Porcayo-Calderon J, et al. High temperature corrosion performance of FeAl intermetallic alloys in molten salts. Mater Sci Eng A, 2003, 349: 12 doi: 10.1016/S0921-5093(01)01940-2
    [8] Wang F, Liu G Y, Yang J J, et al. Application and development of metal filter materials in high-temperature gas filtration. Powder Metall Technol, 2018, 36(3): 230

    王凡, 刘冠颖, 杨军军, 等. 金属过滤材料在高温除尘中的应用与发展. 粉末冶金技术, 2018, 36(3): 230
    [9] Liu X S, Gu H, Ping S B, et al. Performance of Fe3Al metal filter and its application in U-gas coal gasification plant. Clean Coal Technol, 2017, 23(5): 119

    刘显胜, 顾虎, 平韶波, 等. Fe3Al金属滤芯特性及在U-gas煤气化装置中的应用. 洁净煤技术, 2017, 23(5): 119
    [10] Sun W J. Application of metal filter in ash removal system of shell gasifier. Chem Enterpr Manag, 2013(6): 107 doi: 10.3969/j.issn.1008-4800.2013.06.089

    孙卫军. 金属滤芯在壳牌气化炉除灰系统中的应用. 化工管理, 2013(6): 107 doi: 10.3969/j.issn.1008-4800.2013.06.089
    [11] Zhou G L. Research progress and application of filter element in fly-ash filter of coal gasification plant. Shanxi Chem Ind, 2017(5): 112

    周贵龙. 煤气化装置飞灰过滤器用滤芯研究进展及应用初探. 山西化工, 2017(5): 112
    [12] Wang H, Yang J J, Liu G Y, et al. Application of Fe3Al filter element in fly ash filter of coal gasification device. Clean Coal Technol, 2013, 19(1): 78

    王浩, 杨军军, 刘冠颖, 等. Fe3Al滤芯在煤气化装置飞灰过滤器中的应用. 洁净煤技术, 2013, 19(1): 78
    [13] Ma J T, Li Z, Shangguan G Q. Performance comparison of metal filter and ceramic filter in HPHT fly-ash filter of coal gasification device. Chem Enterp Manage, 2015(3): 158 doi: 10.3969/j.issn.1008-4800.2015.03.141

    马江涛, 李准, 上官国青. 煤气化装置高温高压飞灰过滤器金属滤芯与陶瓷滤芯性能对比. 化工管理, 2015(3): 158 doi: 10.3969/j.issn.1008-4800.2015.03.141
    [14] Huang P Y. Power Metallurgy Principles. Beijing: Metallurgy Industry Press, 2006

    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2006
    [15] Wang H, Yang J J, Wang F, et al. Study progress and application on coal gasification device fly ash filter candle. Petro-Chem Equip, 2012, 41(3): 68 doi: 10.3969/j.issn.1000-7466.2012.03.020

    王浩, 杨军军, 王凡, 等. 煤气化装置飞灰过滤器用滤芯研究进展及应用. 石油化工设备, 2012, 41(3): 68 doi: 10.3969/j.issn.1000-7466.2012.03.020
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  166
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回