含Cr和NbSe2铜基电接触复合材料的制备及性能研究

施琴 左文艳 赵光霞

施琴, 左文艳, 赵光霞. 含Cr和NbSe2铜基电接触复合材料的制备及性能研究[J]. 粉末冶金技术, 2020, 38(6): 455-464. doi: 10.19591/j.cnki.cn11-1974/tf.2020050005
引用本文: 施琴, 左文艳, 赵光霞. 含Cr和NbSe2铜基电接触复合材料的制备及性能研究[J]. 粉末冶金技术, 2020, 38(6): 455-464. doi: 10.19591/j.cnki.cn11-1974/tf.2020050005
SHI Qin, ZUO Wen-yan, ZHAO Guang-xia. Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2[J]. Powder Metallurgy Technology, 2020, 38(6): 455-464. doi: 10.19591/j.cnki.cn11-1974/tf.2020050005
Citation: SHI Qin, ZUO Wen-yan, ZHAO Guang-xia. Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2[J]. Powder Metallurgy Technology, 2020, 38(6): 455-464. doi: 10.19591/j.cnki.cn11-1974/tf.2020050005

含Cr和NbSe2铜基电接触复合材料的制备及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020050005
详细信息
    通讯作者:

    施琴, E-mail: ljftxzq@163.com

  • 中图分类号: TB331

Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2

More Information
  • 摘要: 采用复压复烧工艺制备了含不同质量分数Cr和NbSe2的铜基电接触复合材料,利用光学电子显微镜、X射线衍射仪、硬度计、扫描电子显微镜等设备研究了铜基复合材料力学、电学和电摩擦学性能。结果表明,铜基复合材料的密度随着NbSe2含量的增多而增高,硬度和断裂强度随着Cr含量的增多而提高;Cr含量高的铜基复合材料磨痕表面极易生成CuO纳米片,改善了材料的摩擦性能,但降低了电学性能;含适当比例Cr和NbSe2的铜基复合材料有着较好力学、电学性能,且因NbSe2润滑膜和CuO纳米球的协同作用,改善了材料的摩擦性能。
  • 图  1  铜基试样X射线衍射分析

    Figure  1.  XRD analysis of the Cu-based samples

    图  2  铜基试样的力学性能:(a)显微硬度;(b)断裂强度

    Figure  2.  Mechanical properties of Cu-based samples: (a) microhardness; (b) fracture strength

    图  3  铜基试样光学显微形貌:(a)Se1;(b)Se3;(c)Se5

    Figure  3.  Optical micrographs of Cu-based samples: (a) Se1;(c) Se3;(c) Se5

    图  4  Se1试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  4.  Electrical tribological properties of sample Se1:(a) COF and I; (b) SEM images; (c) EDSanalysis at the box type area in SEM

    图  5  Se1试样磨痕的光电子能谱分析

    Figure  5.  X-ray photoelectron spectroscopy (XPS) analysis of sample Se1

    图  6  Se2试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  6.  Electrical tribological properties of sample Se2:(a) COF and I; (b) SEM images; (c) EDSanalysis at the box type area in SEM

    图  7  Se3试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  7.  Electrical tribological properties of sample Se3:(a) COF and I; (b) SEM images; (c) EDSanalysis at the box type area in SEM

    图  8  Se4试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  8.  Electrical tribological properties of sample Se4:(a) COF and I; (b) SEM images; (c) EDS analysis at the box type area in SEM

    图  9  Se5试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  9.  Electrical tribological properties of sample Se5:(a) COF and I; (b) SEM images; (c) EDSanalysis at the box type area in SEM

    图  10  Se6试样的电摩擦学性能:(a)摩擦系数和电流变化;(b)显微形貌;(c)显微形貌框型区域能谱分析

    Figure  10.  Electrical tribological properties of sample Se6:(a) COF and I; (b) SEM images; (c) EDS analysis at the box type area in SEM

    图  11  电摩擦测试前后试样电阻率的变化

    Figure  11.  Resistivity of the Cu-based composite samples before and after the electric friction test

    表  1  铜基复合材料试样组成成分及物理性能

    Table  1.   Composition and physical properties of the copper-based composite samples

    试样编号成分质量分数/%密度, ρ/(kg·m-3)相对密度,ρr/%表面粗糙度,Ra/μm
    CuNbSe2Cr
    Sel650356.96×10384.90.217
    Se26510257.13×10388.10.202
    Se36515207.24×10390.20.214
    Se46520157.39×10392.70.186
    Se56525107.42×10394.00.175
    Se6653507.26×10393.30.193
    下载: 导出CSV

    表  2  金属及其金属氧化物的电阻率

    Table  2.   Electrical resistivity of the metals and metal oxides

    材料NbNbOCrCr2O3CuCuOCu20NbSe2
    电阻率/(Ω·m)12.5 × 10-810-712.9 × 10-81.534 × 10-810~5010~505.35 × 10-6
    下载: 导出CSV
  • [1] Miura H, Nishiyama N, Togashi N, et al. Structure, conductivity and mechanical properties of non-equilibrium copper-based crystalline alloy nano-composites. Intermetallics, 2010, 18(10): 1860 doi: 10.1016/j.intermet.2010.02.033
    [2] Asgharzadeh H, Eslami S. Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloys Compd, 2019, 806: 553 doi: 10.1016/j.jallcom.2019.07.183
    [3] Khobragade N, Sikdar K, Kumar B, et al. Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J Alloys Compd, 2019, 776: 123 doi: 10.1016/j.jallcom.2018.10.139
    [4] Zhao X W, Zang C G, Ma Q K, et al. Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane-and Cu-coated carbon fiber and silicone rubber. J Mater Sci, 2016, 51(8): 4088 doi: 10.1007/s10853-016-9730-0
    [5] Cai A H, Xiong X, Liu Y, et al. Electrical, thermal, and mechanical properties of Cu50Zr40Ti10 bulk amorphous composite. Mater Sci Eng A, 2012, 535: 92 doi: 10.1016/j.msea.2011.12.046
    [6] Zhang Z W, Ji Z, Jia C C, et al. Preparation and properties of copper matrix composites reinforced by CNTs and Al2O3. Powder Metall Technol, 2016, 34(5): 356 doi: 10.3969/j.issn.1001-3784.2016.05.007

    张政委, 纪箴, 贾成厂, 等. 碳纳米管和氧化铝颗粒协同增强铜基复合材料的制备与性能研究. 粉末冶金技术, 2016, 34(5): 356 doi: 10.3969/j.issn.1001-3784.2016.05.007
    [7] Wu Q, Jia C C, Nie J H. Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes. Powder Metall Technol, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm

    吴琼, 贾成厂, 聂俊辉. 镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究. 粉末冶金技术, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm
    [8] Huang S Y, Feng Y, Liu H J, et al. Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2, nanotubes composites in air and vacuum conditions. Mater Sci Eng A, 2013, 560(2): 685 http://www.sciencedirect.com/science/article/pii/S0921509312014499
    [9] Liu Q Y, Wang H J, Zhou C Y, et al. Preparation and high temperature properties of new self-lubricating die materials. Powder Metall Technol, 2020, 38(1): 51 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008

    刘清阳, 王华君, 周春杨, 等. 新型自润滑模具材料的制备和高温性能研究. 粉末冶金技术, 2020, 38(1): 51 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
    [10] Tang H, Cao K S, Wu Q, et al. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles. Cryst Res Technol, 2011, 46(2): 195 doi: 10.1002/crat.201000499
    [11] Tian B H, Chen X L, Zhang Y, et al. Electrical contact characteristics of Cu-Mo-WC composites prepared by spark plasma sintering process. Rare Met Mater Eng, 2018, 47(3): 943 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201803037.htm

    田保红, 程新乐, 张毅, 等. 放电等离子烧结Cu-Mo-WC复合材料电接触特性. 稀有金属材料与工程, 2018, 47(3): 943 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201803037.htm
    [12] Watanabe Y. High-speed sliding characteristics of Cu-Sn-based composite materials containing lamellar solid lubricants by contact resistance studies. Wear, 2008, 264(7): 624 http://www.sciencedirect.com/science/article/pii/S0043164807005650
    [13] Mao S C. Linear dependence of resistivity-temperature and holon-phonon scattering in Cu-O planes. J Shenyang Univ Nat Sci, 2016, 28(1): 1 doi: 10.3969/j.issn.2095-5456.2016.01.001

    毛善成. 铜氧面电阻率-温度线性依赖与空穴-声子散射. 沈阳大学学报(自然科学版), 2016, 28(1): 1 doi: 10.3969/j.issn.2095-5456.2016.01.001
    [14] Wood J T, Griffin Jr A J, Embury J D, et al. The influence of microstructural scale on the combination of strength and electrical resistivity in copper based composites. J Mech Phys Solids, 1995, 44(5): 737 http://www.sciencedirect.com/science/article/pii/0022509696000105
    [15] Change S Y, Guo Z C. Recent advance in technology of anti-oxidation copper powder. Powder Metall Ind, 2007, 17(1): 49 doi: 10.3969/j.issn.1006-6543.2007.01.010

    常仕英, 郭忠诚. 铜粉抗氧化性处理技术的进展. 粉末冶金工业, 2007, 17(1): 49 doi: 10.3969/j.issn.1006-6543.2007.01.010
    [16] Huang S Y. Influence of current density on electrical friction property of Cu-based self-lubricating materials. Ordn Mater Sci Eng, 2020, 43(2): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202002019.htm

    黄仕银. 电流密度对铜基自润滑材料电摩擦性能的影响. 兵器材料科学与工程, 2020, 43(2): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202002019.htm
    [17] Han M, Du J H, Ning K Y, et al. Effect of temperature distribution on pitting damage of copper-based friction material. Powder Metall Technol, 2019, 37(1): 18 doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003

    韩明, 杜建华, 宁克焱, 等. 温度分布对铜基摩擦材料点蚀损伤的影响. 粉末冶金技术, 2019, 37(1): 18 doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
    [18] Liu H C. Study on Copper Based Electrical Contact Composites Modified by Multi Component[Dissertation]. Jinan: University of Jinan, 2018

    刘焕超. 多组元改性铜基电接触复合材料的研究[学位论文]. 济南: 济南大学, 2018
    [19] Shi Q. Research on Electrical Contact Composites Containing Transition Metal Selenides[Dissertation]. Zhenjiang: Jiangsu University, 2017

    施琴. 过渡族金属硒化物电接触复合材料的研究[学位论文]. 镇江: 江苏大学, 2017
    [20] Liu N. Study of Cu Matrix Graphite Friction Composite by Powder Metallurgy[Dissertation]. Harbin: Harbin University of Science and Technology, 2014

    刘宁. 粉末冶金法制备Cu/C复合材料的性能研究[学位论文]. 哈尔滨: 哈尔滨理工大学, 2014
    [21] Li G J, Yang T Y, Ma Y Y, et al. Mechanical characteristics of the Ag/SnO2 electrical contact materials with Cu2O and CuO additives. J Alloys Compd, 2020, 817: 152710 doi: 10.1016/j.jallcom.2019.152710
    [22] Li J F, Shi Q, Zhu H J, et al. Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets. Ind Lubr Tribol, 2018, 70(3): 560 doi: 10.1108/ILT-10-2016-0259
    [23] Wang L, Zhang X Y, Lei Y Y, et al. Study on high-temperature oxidation properties of new copper-based electrical contact materials. Nonferrous Met Extr Metall, 2016(4): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-METE201604015.htm

    王丽, 张晓燕, 雷源源, 等. 新型铜基电接触材料的高温氧化性能研究. 有色金属(冶炼部分), 2016(4): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-METE201604015.htm
    [24] Valladares L De Los S, Salinas D H, Dominguez A B, et al. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films, 2012, 520(20): 6368 doi: 10.1016/j.tsf.2012.06.043
    [25] Koshy C P, Rajendrakumar P K, Thottackkad M V. Experimental evaluation of the tribological properties of CuO nano-lubricants at elevated temperatures//Proceedings of International Conference on Advances in Tribology and Engineering Systems. New Delhi, 2014: 391 http://www.researchgate.net/publication/278326951_Experimental_Evaluation_of_the_Tribological_Properties_of_CuO_Nano-Lubricants_at_Elevated_Temperatures
    [26] Bahadur S, Polineni V K. Tribological studies of glass fabric-reinforced polyamide composites filled with CuO and PTFE. Wear, 1996, 200(1-2): 95 doi: 10.1016/S0043-1648(96)07327-9
    [27] Wang Q H, Zhang X R, Pei X Q. A synergistic effect of graphite and nano-CuO on the tribological behavior of polyimide composites. J Macromol Sci Part B Phys, 2010, 50(2): 213 doi: 10.1080/00222341003641156
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  114
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 刊出日期:  2020-12-27

目录

    /

    返回文章
    返回