退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能

李烨 刘世锋 王建忠 王利卿 敖庆波 马军 吴琛 汤慧萍

李烨, 刘世锋, 王建忠, 王利卿, 敖庆波, 马军, 吴琛, 汤慧萍. 退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能[J]. 粉末冶金技术, 2021, 39(4): 326-331. doi: 10.19591/j.cnki.cn11-1974/tf.2020050006
引用本文: 李烨, 刘世锋, 王建忠, 王利卿, 敖庆波, 马军, 吴琛, 汤慧萍. 退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能[J]. 粉末冶金技术, 2021, 39(4): 326-331. doi: 10.19591/j.cnki.cn11-1974/tf.2020050006
LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. doi: 10.19591/j.cnki.cn11-1974/tf.2020050006
Citation: LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. doi: 10.19591/j.cnki.cn11-1974/tf.2020050006

退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020050006
基金项目: 陕西省重点研发计划资助项目(2021GY-231)
详细信息
    通讯作者:

    E-mail: liye_870416@163.com

  • 中图分类号: TG142.71

Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys

More Information
  • 摘要: 采用模锻工艺及980 ℃退火工艺制备了Ti−6Al−3Nb−2Zr−1Mo合金,通过扫描电子显微镜(scanning electron microscope,SEM)观察和电子背向散射衍射(electron back-scattered diffraction,EBSD)分析等方法研究了退火态合金不同截面上的微观组织与力学性能。结果表明:与锻态合金比较,退火态Ti−6Al−3Nb−2Zr−1Mo合金的α相含量减少,亚稳态的β相增多。在空气冷却的过程中,合金的亚稳态β相又转化为次生α相和少量β相。退火态Ti−6Al−3Nb−2Zr−1Mo合金中α-Ti呈现出RD//[$ \bar {1} $2$ \bar {1} $0]、FD//[0001]的织构类型(FD为锻件压缩方向(锻造方向),RD为锻件自由延伸方向)。退火态Ti−6Al−3Nb−2Zr−1Mo合金的三个方向拉伸断裂主要是韧性断裂,并且断裂方式呈现出微孔聚集断裂。沿RD方向拉伸时韧窝尺寸较大,对应的延伸率也优于其他方向。
  • 图  1  样品取向(a)和样品尺寸(b)示意图

    Figure  1.  Schematic diagram of the sample orientation (a) and geometry (b)

    图  2  Ti−6Al−3Nb−2Zr−1Mo合金显微组织:(a)锻态合金;(b)退火态合金

    Figure  2.  Microstructure of the Ti−6Al−3Nb−2Zr−1Mo alloys: (a) forged alloys; (b) annealed alloys

    图  3  退火态Ti−6Al−3Nb−2Zr−1Mo合金α-Ti微观组织形貌:(a)侧面;(b)断面

    Figure  3.  Microstructure of α-Ti in the annealed Ti−6Al−3Nb−2Zr−1Mo alloys: (a) broad side; (b) cross section

    图  4  退火态Ti−6Al−3Nb−2Zr−1Mo合金取向成像图(IPF-Z)和反极图(IPF):(a)侧面IPF-Z图;(b)断面IPF-Z图;(c)侧面IPF图;(d)断面IPF图

    Figure  4.  Orientation mapping (IPF-Z) and inverse pole figure (IPF) of the annealed Ti−6Al−3Nb−2Zr−1Mo alloys: (a) IPF-Z of broad side; (b) IPF-Z in cross section; (c) IPF of broad side; (d) IPF in cross section

    图  5  退火态Ti−6Al−3Nb−2Zr−1Mo合金三个方向的拉伸曲线

    Figure  5.  Tensile curves of the annealed Ti−6Al−3Nb−2Zr−1Mo alloys in the different direction

    图  6  退火态Ti−6Al−3Nb−2Zr−1Mo合金的三个方向塑性变形宏观形貌

    Figure  6.  Macro morphology of the annealed Ti−6Al−3Nb−2Zr−1Mo alloys after deformation in the different direction

    图  7  退火态Ti−6Al−3Nb−2Zr−1Mo合金的三个方向拉伸断口形貌:(a)和(b)RD;(c)和(d)TD;(e)和(f)FD

    Figure  7.  Tensile fracture of the annealed Ti−6Al−3Nb−2Zr−1Mo alloys in the different direction: (a) and (b) RD; (c) and (d) TD; (c) and (f) FD

    表  1  试验用钛合金锻造工艺

    Table  1.   Forging process of the titanium alloys

    锻造次数温度 / ℃保温时间 / min
    1117060
    21100
    31030
    4970
    5
    6960
    7
    下载: 导出CSV

    表  2  退火态Ti−6Al−3Nb−2Zr−1Mo合金三个方向的拉伸力学性能

    Table  2.   Mechanical properties of the annealed Ti−6Al−3Nb−2Zr−1Mo alloys in the different direction

    方向弹性模量 /
    GPa
    屈服强度 /
    MPa
    抗拉强度 /
    MPa
    延伸率 /
    %
    RD109.9754.4843.516.3
    TD122.3771.6869.112.7
    FD107.7776.9889.110.0
    下载: 导出CSV
  • [1] Faller K, Frose F H. The use of titanium in family automobiles: Current trends. JOM, 2001, 53(4): 27 doi: 10.1007/s11837-001-0143-3
    [2] Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s. J Mater Eng Perform, 2005, 14(6): 799 doi: 10.1361/105994905X75646
    [3] Boyer R R. Attributes, characteristics, and applications of titanium and its alloys. JOM, 2010, 62(5): 21 doi: 10.1007/s11837-010-0071-1
    [4] Zhou W Z. Characteristics and application of titanium as "Marine metal". World Nonferrous Met, 2014(8): 28

    邹武装. “海洋金属”钛的特性及应用. 世界有色金属, 2014(8): 28
    [5] Xu L J, Cheng D B. Ship Ti alloy and Ti alloy powder metallurgy technology. Dev Appl Mater, 2009, 24(2): 68 doi: 10.3969/j.issn.1003-1545.2009.02.017

    徐鲁杰, 程德彬. 船用钛合金及钛合金粉末冶金技术. 材料开发与应用, 2009, 24(2): 68 doi: 10.3969/j.issn.1003-1545.2009.02.017
    [6] Hu Y J. Developing marine titanium alloy. Titanium Ind Prog, 1998(4): 1

    胡耀君. 发展中的船用钛合金. 钛工业进展, 1998(4): 1
    [7] Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys. Titanium Ind Prog, 2004, 21(5): 19 doi: 10.3969/j.issn.1009-9964.2004.05.005

    李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景. 钛工业进展, 2004, 21(5): 19 doi: 10.3969/j.issn.1009-9964.2004.05.005
    [8] Du Y Q, Wang J P, Wang S H, et al. Welding procedure research of new titanium alloy Ti−6Al−3Nb−2Zr−1Mo (Ti80). Petro-Chem Equip, 2015, 44(2): 67 doi: 10.3969/j.issn.1000-7466.2015.02.015

    杜永勤, 王建平, 王书华, 等. 新型Ti−6Al−3Nb−2Zr−1Mo(Ti80)合金焊接工艺研究. 石油化工设备, 2015, 44(2): 67 doi: 10.3969/j.issn.1000-7466.2015.02.015
    [9] Huang Y, Tang H P, Jia W P, et al. Influence of element addition ways on the performance of Ti−6Al−3Nb−2Zr−1Mo alloy. Rare Met Mater Eng, 2011, 40(12): 2227

    黄瑜, 汤慧萍, 贾文鹏, 等. 元素添加方式对Ti−6Al−3Nb−2Zr−1Mo合金性能的影响. 稀有金属材料与工程, 2011, 40(12): 2227
    [10] Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti–6Al–3Nb–2Zr–1Mo alloy tube. Mater Sci Eng A, 2019, 766: 138346 doi: 10.1016/j.msea.2019.138346
    [11] Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108

    赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108
    [12] Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure. Mater Charact, 2019, 151: 103 doi: 10.1016/j.matchar.2019.03.005
    [13] Dong Y, Sun X Q. Combination mechanical properties of power forged steel with median and high carbon contents. Powder Metall Technol, 1994, 12(1): 8

    董颐, 孙晓强. 中高碳量粉末锻造钢的综合性能. 粉末冶金技术, 1994, 12(1): 8
    [14] Joane L M. Phase Diagrams of Binary Titanium Alloys. Ohio: ASM International, 1987
    [15] Zhang W F, Cao C X, Li X W, et al. Effect of β heat treatment on mechanical properties of TA15 titanium alloy. Rare Met Mater Eng, 2004, 33(7): 768

    张旺峰, 曹春晓, 李兴无, 等. β热处理TA15钛合金对力学性能的影响规律. 稀有金属科学与工程, 2004, 33(7): 768
    [16] Chen C M. Study on Composition Optimization and Microstructures and Properties of Corrosion Resistant Ti−Al−Nb−Zr−Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018

    陈才敏. 耐蚀Ti−Al−Nb−Zr−Mo合金的组成优化及组织性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  171
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回