热旋锻变形对TiCN强化ASP30粉末冶金高速钢的组织及性能研究

陈泽民 张乾坤 肖逸锋 吴靓 钱锦文 李苏望 唐俊

陈泽民, 张乾坤, 肖逸锋, 吴靓, 钱锦文, 李苏望, 唐俊. 热旋锻变形对TiCN强化ASP30粉末冶金高速钢的组织及性能研究[J]. 粉末冶金技术, 2022, 40(4): 376-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050009
引用本文: 陈泽民, 张乾坤, 肖逸锋, 吴靓, 钱锦文, 李苏望, 唐俊. 热旋锻变形对TiCN强化ASP30粉末冶金高速钢的组织及性能研究[J]. 粉末冶金技术, 2022, 40(4): 376-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050009
CHEN Ze-min, ZHANG Qian-kun, XIAO Yi-feng, WU Liang, QIAN Jin-wen, LI Su-wang, TANG Jun. Effect of hot rotary swaging deformation on microstructure and properties of ASP30 grade powder metallurgical high speed steels strengthened by TiCN[J]. Powder Metallurgy Technology, 2022, 40(4): 376-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050009
Citation: CHEN Ze-min, ZHANG Qian-kun, XIAO Yi-feng, WU Liang, QIAN Jin-wen, LI Su-wang, TANG Jun. Effect of hot rotary swaging deformation on microstructure and properties of ASP30 grade powder metallurgical high speed steels strengthened by TiCN[J]. Powder Metallurgy Technology, 2022, 40(4): 376-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050009

热旋锻变形对TiCN强化ASP30粉末冶金高速钢的组织及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020050009
基金项目: 国家自然科学基金资助项目(51704257)
详细信息
    通讯作者:

    E-mail: qiankun.z@xtu.edu.cn

  • 中图分类号: TG142.1; TF124

Effect of hot rotary swaging deformation on microstructure and properties of ASP30 grade powder metallurgical high speed steels strengthened by TiCN

More Information
  • 摘要: 采用粉末冶金法制备TiCN强化ASP30粉末冶金高速钢棒料,研究TiCN及旋锻变形量对ASP30高速钢力学性能与显微组织的影响,并研究其摩擦磨损行为。结果表明,添加质量分数5%的TiCN可明显提高ASP30的耐磨性。旋锻变形量为56%的ASP30+5%TiCN合金棒料经淬火-回火处理后,抗弯强度达到4084.99 N·mm‒2,抗冲击韧性达到14.55 J·cm‒2,相较于未旋锻态,其强韧性得到明显提升。在反复径向旋锻变形作用下,TiCN硬质相明显破碎,呈弥散颗粒状分布,且旋锻可以促进TiCN生成核壳结构,硬质相与基体之间的润湿性与结合能力得到提高,抑制了磨削过程中硬质相/基体间裂纹的产生。
  • 图  1  旋锻及热处理工艺曲线

    Figure  1.  Curves of the rotary swaging and heat treatment

    图  3  变形量为56%的合金棒料显微组织核壳结构

    Figure  3.  Core-shell structure in the microstructure of the steels with 56% deformation

    图  4  变形量为56%的合金棒料显微组织中核壳结构成分分布

    Figure  4.  Composition distribution of the core-shell structure in the microstructure of the steels with 56% deformation

    图  6  旋锻变形对样品磨痕界面轮廓的影响

    Figure  6.  Effect of the rotary swaging deformation on the interface profile of the wear traces

    图  7  0%(a)及56%(b)旋锻变形量下材料冲击断口表面显微形貌

    Figure  7.  Impact fracture micrograph of the steels after 0% (a) and 56% (b) rotary swaging

    表  1  ASP30高速钢化学成分(质量分数)

    Table  1.   Chemical composition of the ASP30+5%TiCN high speed steels %

    CWMoCrVCoSiMnFe
    1.286.405.004.203.108.500.300.30余量
    下载: 导出CSV

    表  2  旋锻变形量对合金力学性能的影响

    Table  2.   Effect of rotary swaging deformation on the mechanical properties of alloys

    变形量 /
    %
    冲击韧性 /
    (J·cm‒2)
    抗弯强度 /
    (N·mm‒2)
    硬度,
    HRC
    07.682011.4266.30
    2111.223402.9062.26
    4012.363734.6162.26
    5614.554084.9962.74
    7313.443842.5661.89
    下载: 导出CSV
  • [1] Chatterjee D, Sutradhar G, Oraon B. Fuzzy rule-based prediction of hardness for sintered HSS components. J Mater Process Technol, 2008, 200(1-3): 212 doi: 10.1016/j.jmatprotec.2007.09.057
    [2] Badger J. Grindability of conventionally produced and powder-metallurgy high-speed steel. CIRP Ann, 2007, 56(1): 353 doi: 10.1016/j.cirp.2007.05.081
    [3] Wu Y C. Evolution of technology of powder metallurgy high speed steel. Powder Metall Ind, 2007, 17(2): 30 doi: 10.3969/j.issn.1006-6543.2007.02.007

    吴元昌. 粉末冶金高速钢生产工艺的发展. 粉末冶金工业, 2007, 17(2): 30 doi: 10.3969/j.issn.1006-6543.2007.02.007
    [4] Jia C C, Wu L Z. Powder metallurgy high speed steel. Met World, 2012(2): 5 doi: 10.3969/j.issn.1000-6826.2012.02.002

    贾成厂, 吴立志. 粉末冶金高速钢. 金属世界, 2012(2): 5 doi: 10.3969/j.issn.1000-6826.2012.02.002
    [5] Lan D F. Study on Preparation and Heat Treatment of Ti(C, N) Based Steel Bonded Carbide [Dissertation]. Zhuzhou: Hunan University of Technology, 2016

    兰登飞. TiCN基钢结硬质合金制备及热处理的研究[学位论文]. 株洲: 湖南工业大学, 2016
    [6] Velasco F, Isabel R, Antón N, et al. TiCN—high speed steel composites: sinterability and properties. Composites Part A, 2002, 33(6): 819 doi: 10.1016/S1359-835X(02)00024-6
    [7] Liu H W, Chen K H, Lü H B. Wettability of Ti(C, N)-based cermets. Powder Metall Technol, 2000, 18(3): 167 doi: 10.3321/j.issn:1001-3784.2000.03.002

    刘红卫, 陈康华, 吕海波. Ti(C, N)基硬质合金中的润湿性研究. 粉末冶金技术, 2000, 18(3): 167 doi: 10.3321/j.issn:1001-3784.2000.03.002
    [8] Zhang H B, Shen W J, Zhuang Q M, et al. Novel powder metallurgy high speed steel with high-performance and its near-net shaping technology. J Netshape Form Eng, 2017, 9(2): 14 doi: 10.3969/j.issn.1674-6457.2017.02.003

    张惠斌, 沈玮俊, 庄启明, 等. 新型高性能粉末冶金高速钢及其近净成形制备技术. 精密成形工程, 2017, 9(2): 14 doi: 10.3969/j.issn.1674-6457.2017.02.003
    [9] Ghaei A, Taheri A K, Movahhedy M R. A new upper bound solution for analysis of the radial forging process. Int J Mech Sci, 2006, 48(11): 1264 doi: 10.1016/j.ijmecsci.2006.06.002
    [10] Frank G, Christine K. Rotary swaging technology-applications of a versatile process. Sheet Met Ind, 1998, 75(8): 22
    [11] Zhou X F, Fang F, Jiang J Q, et al. Study on property and morphology of M2C eutectic carbides in M2 high speed steel. Iron Steel, 2009, 44(9): 76 doi: 10.3321/j.issn:0449-749X.2009.09.018

    周雪峰, 方峰, 蒋建清, 等. 高速钢M2中共晶碳化物M2C的性质和形态. 钢铁, 2009, 44(9): 76 doi: 10.3321/j.issn:0449-749X.2009.09.018
    [12] Akhtar F. A new method to process high strength TiCN stainless steel matrix composites. Powder Metall, 2007, 50(3): 250 doi: 10.1179/174329007X178038
    [13] Li Q, Li Z D, Lin C G, et al. Research on hot-swage deformation of Mo70Cu30 alloy sintered bar. Powder Metall Technol, 2015, 33(5): 355 doi: 10.3969/j.issn.1001-3784.2015.05.008

    李卿, 李增德, 林晨光, 等. Mo70Cu30合金烧结棒坯热旋锻变形研究. 粉末冶金技术, 2015, 33(5): 355 doi: 10.3969/j.issn.1001-3784.2015.05.008
    [14] Fredriksson H, Hillert M, Nica M. Decomposition of the M2C carbide in high speed steel. Scand J Metall, 1979, 8(3): 115
    [15] Mao S W. Research of characteristics and mechanism on WC grain diffusion-dissolution-precipitation during sintering of ultrafine cemented carbide. Cement Carb, 2014, 31(2): 67

    毛善文. 超细硬质合金烧结过程中WC扩散-溶解-析出特征与机理研究. 硬质合金, 2014, 31(2): 67
    [16] Wang Q, Wang W Z, Zhang H X. Growth kinetics of ceramet particles in the form of dissolve-separation. J Northeast Univ Nat Sci, 1996, 17(5): 32

    王群, 王文忠, 张洪绪, 等. 金属陶瓷中的颗粒的溶解-析出生长机制动力学. 东北大学学报(自然科学版), 1996, 17(5): 32
    [17] Wang D Z, Liu X Y, Zhou M L. Study on toughening mechanism of Mo-La2O3 sintered bars. Powder Metall Technol, 2002, 20(2): 75 doi: 10.3321/j.issn:1001-3784.2002.02.003

    王德志, 刘心宇, 周美玲. Mo-La2O3烧结坯的韧化机制研究. 粉末冶金技术, 2002, 20(2): 75 doi: 10.3321/j.issn:1001-3784.2002.02.003
    [18] Li R, Wang X X. Effect of Ti content and ageing on microstructure and hardness of 00Cr12Ni9Mo4Cu maraging stainless steel. Trans Mater Heat Treat, 2009, 30(3): 137

    李蓉, 王小祥. Ti含量及时效工艺对00Cr12Ni9Mo4Cu合金组织和硬度的影响. 材料热处理学报, 2009, 30(3): 137
    [19] Ma L X, Liu Y X, Li W X. Study on adherence abrasion and influenced factors. J Harbin Univ Comm Nat Sci, 2001, 17(1): 74

    马丽心, 刘义翔, 李文新. 粘着磨损及影响因素的研究. 哈尔滨商业大学学报(自然科学版), 2001, 17(1): 74
    [20] Sun Y. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribol Int, 2013, 57(4): 67
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  85
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回