水热法和氢气还原法制备纳米Mo–40Cu复合粉末及其烧结性能研究

郭世柏 易正翼 王南川 孙靖 廖景冰

郭世柏, 易正翼, 王南川, 孙靖, 廖景冰. 水热法和氢气还原法制备纳米Mo–40Cu复合粉末及其烧结性能研究[J]. 粉末冶金技术, 2020, 38(5): 377-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050010
引用本文: 郭世柏, 易正翼, 王南川, 孙靖, 廖景冰. 水热法和氢气还原法制备纳米Mo–40Cu复合粉末及其烧结性能研究[J]. 粉末冶金技术, 2020, 38(5): 377-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050010
GUO Shi-bo, YI Zheng-yi, WANG Nan-chuan, SUN Jing, LIAO Jing-bing. Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method[J]. Powder Metallurgy Technology, 2020, 38(5): 377-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050010
Citation: GUO Shi-bo, YI Zheng-yi, WANG Nan-chuan, SUN Jing, LIAO Jing-bing. Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method[J]. Powder Metallurgy Technology, 2020, 38(5): 377-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020050010

水热法和氢气还原法制备纳米Mo–40Cu复合粉末及其烧结性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020050010
基金项目: 

国家自然科学基金资助项目 51675176

湖南省自然科学基金资助项目 2017JJ2091

湖南省教育厅优秀青年基金资助项目 14B065

详细信息
    通讯作者:

    郭世柏, E-mail: guoshibo163@163.com

  • 中图分类号: TG146.4

Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method

More Information
  • 摘要: 结合水热法和氢气还原法制备纳米Mo–40Cu复合粉末,利用X射线衍射仪、扫描电子显微镜、透射电镜等手段研究了氢气气氛下烧结工艺对Mo–40Cu复合材料组织和力学性能的影响。结果表明,最佳制粉工艺为水热温度400 ℃和氢气还原温度700 ℃,获得了均匀的Mo–40Cu复合粉末,粉末粒径为70~90 nm;在氢气气氛下最佳烧结工艺为1300 ℃保温2 h,合金的相对密度、抗弯强度、硬度、电导率和热导率分别为98.1%、1060 MPa、HRA 51、20.8 MS·m-1和191.7 W·m-1·K-1,热膨胀系数在500~700 ℃约为10.8×10-6 K-1,合金中组织均匀,晶粒细小,尺寸约为3~4 μm。
  • 图  1  不同水热温度下Mo–40Cu前驱体粉末X射线衍射图谱

    Figure  1.  XRD patterns of the Mo–40Cu precursor powders at different hydrothermal temperatures

    图  2  不同还原温度下Mo–40Cu复合粉末X射线衍射图谱

    Figure  2.  XRD patterns of Mo–40Cu composite powders at different hydrogen reduction temperatures

    图  3  不同还原温度下Mo–40Cu复合粉末扫描电子显微形貌:(a)650 ℃;(b)700 ℃;(c)750 ℃

    Figure  3.  SEM images of Mo–40Cu composite powders at different hydrogen reduction temperatures: (a) 650 ℃; (b) 700 ℃; (c) 750 ℃

    图  4  700 ℃还原温度下复合粉末透射电镜形貌:(a)透射电镜粉末形貌;(b)高分辨透射电镜粉末形貌

    Figure  4.  TEM images of the composite powders at the reduction temperature of 700 ℃: (a) TEM image of powders; (b) high resolution TEM image of powders

    图  5  不同烧结温度下Mo–40Cu合金的密度和相对密度

    Figure  5.  Density and relative density of the Mo–40Cu alloys sintered at different temperatures

    图  6  不同烧结温度下Mo–40Cu合金的抗弯强度和硬度

    Figure  6.  Bending strength and hardness of the Mo–40Cu alloys sintered at different temperatures

    图  7  不同烧结温度下Mo–40Cu合金的电导率和热导率

    Figure  7.  Electrical conductivity and thermal conductivity of the Mo–40Cu alloys sintered at different temperatures

    图  8  Mo–40Cu合金的热膨胀系数与测试温度关系曲线

    Figure  8.  Relationship between the thermal expansion coefficient and the test temperatures of Mo–40Cu alloys

    图  9  不同烧结温度下Mo–40Cu合金的显微组织:(a)1200 ℃;(b)1250 ℃;(c)1300 ℃;(d)1350 ℃;(e)1400 ℃

    Figure  9.  Microstructures of Mo–40Cu alloys at different sintering temperatures: (a) 1200 ℃; (b) 1250 ℃; (c) 1300 ℃; (d) 1350 ℃; (e) 1400 ℃

  • [1] Wang D, Wang Y J, Deng W Z, et al. Microstructure and mechanical properties of Mo–ZrC–Cu composites synthesized by reactive melt infiltration of Zr–Cu melt into porous Mo2C preforms at 1300 ℃. Mater Chem Phys, 2018, 212: 51 doi: 10.1016/j.matchemphys.2018.01.033
    [2] Sun J. Production and Sintering Property of Superfine Mo–40Cu Composite Powder [Dissertation]. Xiangtan: Hunan University of Science and Technology, 2016

    孙靖. 纳米Mo–40Cu复合粉末的制备及其烧结性能研究[学位论文]. 湘潭: 湖南科技大学, 2016
    [3] Wang D Z, Zhang Y Q, Duan B H. Preparation of Mo–Cu composite by rapid microwave infiltration. Nonferrous Met Sci Eng, 2018, 9(3): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201803003.htm

    王德志, 张宇晴, 段柏华. 微波快速熔渗制备钼铜复合材料. 有色金属科学与工程, 2018, 9(3): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201803003.htm
    [4] Benavides P A, Benjamín S, Palma R H. Liquid phase sintering of mechanically alloyed Mo–Cu powders. Mater Sci Eng A, 2017, 701: 237 doi: 10.1016/j.msea.2017.06.090
    [5] Ji X P, Cao W C, Bu C Y, et al. A new route for preparing Mo–10wt%Cu composite compacts. Int J Refract Met Hard Mater, 2019, 81: 196 doi: 10.1016/j.ijrmhm.2019.03.008
    [6] Wang D Z, Yin B Z, Sun A K, et al. Fabrication of Mo–Cu composite powders by heterogeneous precipitation and the sintering properties of the composite compacts. J Alloys Compd, 2016, 674: 347 doi: 10.1016/j.jallcom.2016.03.027
    [7] Li B Q, Jin H C, Ding F, et al. Fabrication of homogeneous Mo–Cu composites using spherical molybdenum powders prepared by thermal plasma spheroidization process. Int J Refract Met Hard Mat, 2018, 73: 13 doi: 10.1016/j.ijrmhm.2018.01.022
    [8] Yao J T, Li C J, Li Y, et al. Relationships between the properties and microstructure of Mo–Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton. Mater Des, 2015, 88: 774 doi: 10.1016/j.matdes.2015.09.062
    [9] Wang D Z, Li R, Duan B H. Effects of pressure on preparation of Mo–20Cu alloy by hot-press sintering. Rare Met Mater Eng, 2017, 46(7): 1998 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201707043.htm

    王德志, 李然, 段柏华. 压力对热压烧结制备Mo–20Cu复合材料的影响. 稀有金属材料与工程, 2017, 46(7): 1998 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201707043.htm
    [10] Liu Z W, Li P, Wan Q, et al. Low-temperature combustion synthesis of hexagonal WO3·0.33H2O@C as anode material for lithium ion batteries. J Alloys Compds, 2017, 701: 215 doi: 10.1016/j.jallcom.2017.01.089
    [11] Zhao Y Y, Jiang N, Zhang X, et al. One-step salt-assisted solution combustion synthesis of Ni-based composites for use as supercapacitor electrodes. J Alloys Compds, 2018, 765: 396 doi: 10.1016/j.jallcom.2018.06.166
    [12] Johnson J L. Activated liquid phase sintering of W–Cu and Mo–Cu. Int J Refract Met Hard Mater, 2015, 53: 80 doi: 10.1016/j.ijrmhm.2015.04.030
    [13] Souli I, Terziyska V L, Zechner J, et al. Microstructure and physical properties of sputter-deposited Cu–Mo thin films. Thin Solid Films, 2018, 653: 301 doi: 10.1016/j.tsf.2018.03.039
    [14] Li P, Liu Z W, Cui L Q, et al. Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. Int J Hydrogen Energy, 2014, 39: 10911 doi: 10.1016/j.ijhydene.2014.04.173
    [15] Sun J, Guo S B. Fabrication and property of ultrafine Mo–40Cu alloy. Trans Mater Heat Treat, 2016, 37(8): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201608002.htm

    孙靖, 郭世柏. 超细Mo–40Cu合金的制备及其性能. 材料热处理学报, 2016, 37(8): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201608002.htm
    [16] Sun H L, Huang X X, He M J, et al. Preparation and controllability of Cu particles on annealed Mo–Cu alloy films. Mater Lett, 2019, 254: 175 doi: 10.1016/j.matlet.2019.07.044
    [17] Souli I, Terziyska V L, Zechner J, et al. Microstructure and physical properties of sputter-deposited Cu–Mo thin films. Thin Solid Films, 2018, 653: 301 doi: 10.1016/j.tsf.2018.03.039
    [18] Cao J, Liu J X, Liu X W, et al. Effect of the distribution state of transition phase on the mechanical properties and failure mechanisms of the W–Mo–Cu alloy by tuning elements content. J Alloys Compd, 2020, 827: 154333 doi: 10.1016/j.jallcom.2020.154333
  • 加载中
图(9)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  142
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回