选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能

许阳 班乐 肖志瑜

许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能[J]. 粉末冶金技术, 2021, 39(6): 505-511. doi: 10.19591/j.cnki.cn11-1974/tf.2020050011
引用本文: 许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能[J]. 粉末冶金技术, 2021, 39(6): 505-511. doi: 10.19591/j.cnki.cn11-1974/tf.2020050011
XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. doi: 10.19591/j.cnki.cn11-1974/tf.2020050011
Citation: XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. doi: 10.19591/j.cnki.cn11-1974/tf.2020050011

选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020050011
详细信息
    通讯作者:

    E-mail: banleban@163.com

  • 中图分类号: TG146;TF123

Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting

More Information
  • 摘要: 对选择性激光熔化成形CoCrWMo合金的工艺参数进行优化,并对最佳工艺下合金试样的摩擦磨损性能进行分析。结果表明:选择性激光熔化最佳工艺参数为激光功率280 W,扫描速度800 mm·s−1,铺粉层厚0.03 mm,扫描间距0.10 mm,扫描策略为旋转扫描法(层与层之间旋转15°)。该工艺下激光体能量密度为117 J·mm−3,试样相对密度为99.4%,上表面粗糙度(Ra)为4.98 μm,显微硬度为HV 386,抗拉强度为984 MPa,屈服强度为663 MPa,断后伸长率为12.9%。在干摩擦下,CoCrWMo合金的平均摩擦系数随施加载荷的增加呈下降趋势;受磨损过程中应变诱导马氏体转变的影响,合金平均磨损率呈现先增高后降低的变化规律,主要磨损机制为磨粒磨损和粘着磨损。
  • 图  1  磨损系统的原理示意图

    Figure  1.  Schematic illustration of the wear system

    图  2  拉伸试样示意图(单位:mm)

    Figure  2.  Dimensions of the tensile specimens (unit: mm)

    图  3  选择性激光熔化成形CoCrWMo合金相对密度与激光体能量密度的关系图

    Figure  3.  Relationship between the relative density and the laser energy density of the CoCrWMo alloys prepared by SLM

    图  4  选择性激光熔化成形CoCrWMo合金上表面粗糙度与激光体能量密度的关系图

    Figure  4.  Relationship between the top surface roughness and the laser energy density of the CoCrWMo alloys prepared by SLM

    图  5  不同激光体能量密度下成形试样的上表面形貌:(a)48 J·mm−3;(b)117 J·mm−3;(c)213 J·mm−3;(d)图5(a)的3D形貌;(e)图5(b)的3D形貌;(f)图5(c)的3D形貌

    Figure  5.  Top surface morphology of the CoCrWMo specimens prepared by SLM with different laser energy density: (a) 48 J·mm−3; (b) 117 J·mm−3; (c) 213 J·mm−3; (d) the corresponding 3D morphology of Fig.5(a); (e) the corresponding 3D morphology of Fig.5(b); (f) the corresponding 3D morphology of Fig.5(c)

    图  6  最佳成形工艺参数下的选择性激光熔化成形CoCrWMo合金上表面和侧表面电子显微形貌:(a)上表面;(b)侧表面;(c)图6(a)局部放大图;(d)图6(b)局部放大图

    Figure  6.  SEM images of the CoCrWMo alloys prepared by SLM in the optimum forming process parameters: (a) top view; (b) side view; (c) local magnification of Fig.6(a); (d) local magnification of Fig.6 (b)

    图  7  原始CoCrWMo合金粉末及选择性激光熔化成形试样的X射线衍射图谱

    Figure  7.  XRD patterns of the CoCrWMo alloy powders and SLM specimens

    图  8  最佳成形工艺下选择性激光熔化成形CoCrWMo合金不同载荷下的摩擦系数(a)和平均摩擦系数(b)

    Figure  8.  Friction coefficient (a) and the average friction coefficient (b) of the CoCrWMo alloys prepared by SLM in the optimum forming process parameters under different loads

    图  9  最佳成形工艺下选择性激光熔化成形CoCrWMo合金不同载荷下磨痕轮廓(a)和磨损率(b)

    Figure  9.  Cross-sectional wear trace profiles (a) and the wear rate (b) of the SLM-ed CoCrWMo alloys in the optimum forming process parameters under different loads

    图  10  最佳成形工艺下选择性激光熔化成形CoCrWMo合金不同载荷下的磨痕形貌图:(a)40 N;(b)60 N;(c)80 N

    Figure  10.  Wear trace of the CoCrWMo alloys prepared by SLM in the optimum forming process parameters under the different applied loads: (a) 40 N; (b) 60 N; (c) 80 N

    表  1  CoCrWMo合金粉末化学成分(质量分数)

    Table  1.   Chemical composition of the CoCrWMo alloy powders %

    CrWMoSiCo
    24.125.454.950.92余量
    下载: 导出CSV

    表  2  选择性激光熔化成形实验参数

    Table  2.   Experiment parameters of SLM manufacturing

    激光功率 / W扫描速度 / (mm·s−1)铺粉层厚 / mm扫描间距 / mm旋转角度 / (°)
    160、200、240、280、320500、650、800、950、11000.030.115
    下载: 导出CSV
  • [1] Toh W Q, Tan X P, Bhowmik A, et al. Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review. Materials, 2017, 11(1): 30 doi: 10.3390/ma11010030
    [2] Liao Y F, Hoffman E, Wimmer M, et al. CoCrMo metal-on-metal hip replacements. Phys Chem Chem Phys, 2013, 15(3): 746 doi: 10.1039/C2CP42968C
    [3] Parkar M, Chavan C. New generation bare metal stents with hybrid cell design and thin struts are safe and effective in treatment of coronary artery stenosis: real world data analysis of Protea CoCr stent. Indian Heart J, 2018, 70(Suppl2): s69
    [4] Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163

    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163
    [5] Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol, 2018, 327: 128 doi: 10.1016/j.powtec.2017.12.058
    [6] Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312

    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312
    [7] Posada O M, Tate R J, Grant M H. Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells. Toxicol in Vitro, 2015, 29(2): 271 doi: 10.1016/j.tiv.2014.11.006
    [8] Wang S, Liao Z H, Feng P F, et al. Research progress on biotribocorrosion of metal material in orthopedic implants. Tribology, 2017, 37(1): 130

    王松, 廖振华, 冯平法, 等. 骨科植入物金属材料生物摩擦腐蚀研究进展. 摩擦学学报, 2017, 37(1): 130
    [9] Radice S, Holcomb T, Pourzal R, et al. Investigation of CoCrMo material loss in a novel bio-tribometer designed to study direct cell reaction to wear and corrosion products. Biotribology, 2019, 18: 100090 doi: 10.1016/j.biotri.2019.100090
    [10] Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des, 2016, 106: 60 doi: 10.1016/j.matdes.2016.05.083
    [11] Liverani E, Balbo A, Monticelli C, et al. Corrosion resistance and mechanical characterization of ankle prostheses fabricated via selective laser melting. Procedia CIRP, 2017, 65: 25 doi: 10.1016/j.procir.2017.04.037
    [12] Lin H, Yang Y Q, Zhang G Q, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting. Acta Opt Sin, 2016, 36(11): 1114003 doi: 10.3788/AOS201636.1114003

    林辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能. 光学学报, 2016, 36(11): 1114003 doi: 10.3788/AOS201636.1114003
    [13] Zhang M K, Yang Y Q, Song C H, et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J Alloys Compd, 2018, 750: 878 doi: 10.1016/j.jallcom.2018.04.054
    [14] Zhang H. Process Optimization and Microstructure Analysis of Selective Laser Melting CoCrW Alloy [Dissertation]. Taiyuan: North University of China, 2018

    张浩. 选区激光熔化CoCrW合金工艺优化和微观组织分析[学位论文]. 太原: 中北大学, 2018
    [15] Li C Q. Study on The Microstructure and Properties of CoCrMo Alloys Fabricated by Selective Laser Melting [Dissertation]. Xi'an: Xi'an University of Technology, 2019

    李翠芹. 选区激光熔化成型CoCrMo合金的组织与性能研究[学位论文]. 西安: 西安理工大学, 2019
    [16] Yan X C, Huang C J, Chen C Y, et al. Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surf Coat Technol, 2019, 371: 161 doi: 10.1016/j.surfcoat.2018.03.072
    [17] Martinez-Nogues V, Nesbitt J M, Wood R J K, et al. Nano-scale wear characterization of CoCrMo biomedical alloys. Tribol Int, 2016, 93: 563 doi: 10.1016/j.triboint.2015.03.037
    [18] Lashgari H R, Zangeneh S, Ketabchi M. Isothermal aging effect on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0. 3C alloy. J Mater Sci, 2011, 46(22): 7262
    [19] Salinas-Rodriguez A, Rodriguez-Galicia J L. Deformation behavior of low-carbon Co–Cr–Mo alloys for low-friction implant applications. J Biomed Mater Res, 1996, 31(3): 409 doi: 10.1002/(SICI)1097-4636(199607)31:3<409::AID-JBM16>3.0.CO;2-D
    [20] Zhu Z Y, Meng L, Chen L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met, 2020, 39(3): 241 doi: 10.1007/s12598-019-01364-6
    [21] Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 doi: 10.1016/j.actamat.2012.11.041
    [22] Mori M, Yamanaka K, Matsumoto H, et al. Evolution of cold-rolled microstructures of biomedical Co–Cr–Mo alloys with and without N doping. Mater Sci Eng A, 2010, 528(2): 614 doi: 10.1016/j.msea.2010.09.002
    [23] Balagna C, Spriano S, Faga M G. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance. Mater Sci Eng C, 2012, 32(7): 1868 doi: 10.1016/j.msec.2012.05.003
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  884
  • HTML全文浏览量:  355
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-23
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回