选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

张亚民 吴姚莎 杨均保 曾思惠

张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. doi: 10.19591/j.cnki.cn11-1974/tf.2020050012
引用本文: 张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. doi: 10.19591/j.cnki.cn11-1974/tf.2020050012
ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. doi: 10.19591/j.cnki.cn11-1974/tf.2020050012
Citation: ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. doi: 10.19591/j.cnki.cn11-1974/tf.2020050012

选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020050012
基金项目: 广东省普通高校重点领域专项项目(2022ZDZX3085);广东省普通高校特色创新项目(2020KTSCX323);中山市科技计划项目(2021B2017,2021SYF08);中山火炬职业技术学院校级科研项目(2022BS03,2021CXYZD02)
详细信息
    通讯作者:

    E-mail: 547656588@qq.com

  • 中图分类号: TG142.7

Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting

More Information
  • 摘要: 以气雾化AlSi10Mg粉和高纯TiB2粉为原料,采用高能球磨和等离子球化技术制备选区激光熔化用TiB2/AlSi10Mg复合粉体,使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、激光粒度仪和紫外可见光分光光度计等对等离子球化前后TiB2/AlSi10Mg复合粉体组织结构和性能进行表征。结果表明:经等离子球化后的TiB2/AlSi10Mg复合粉体具有优异的球形度,粒径分布均匀。此外,部分TiB2与Al之间发生了化学反应生成Al3Ti相,获得冶金结合界面,提高了界面结合强度。该复合粉体具有近似于TiB2包覆AlSi10Mg的核壳结构,改善了铝合金粉末的激光吸收率,由23.2%(AlSi10Mg)增加至42.1%(TiB2/AlSi10Mg)。
  • 图  1  气雾化AlSi10Mg粉和高纯TiB2粉形貌:(a)AlSi10Mg;(b)TiB2

    Figure  1.  Morphologies of the raw powders prepared by gas atomization: (a) AlSi10Mg; (b) TiB2

    图  2  TiB2/AlSi10Mg复合粉末等离子球化前后微观形貌:(a)、(b)球化前;(c)、(d)球化后

    Figure  2.  SEM images of the TiB2/AlSi10Mg composite powders before and after plasma spheroidization: (a), (b) before spheroidization; (c), (d) after spheroidization

    图  3  球化TiB2/AlSi10Mg复合粉截面形貌(a)及单个粉末截面能谱分析(b)

    Figure  3.  Cross-section morphology of the plasma spheroidization powders (a) and the energy spectrum analysis of the single powder (b)

    图  4  等离子球化过程中TiB2与AlSi10Mg界面受力分析

    Figure  4.  Interface load analysis between the TiB2 and AlSi10Mg powders during plasma spheroidization

    图  5  AlSi10Mg和等离子球化TiB2/AlSi10Mg复合粉X射线衍射图谱

    Figure  5.  XRD patterns of the AlSi10Mg and plasma spheroidization TiB2/AlSi10Mg composite powders

    图  6  等离子球化TiB2/AlSi10Mg复合粉末明场像(a)及面扫元素分布(b)~(d)

    Figure  6.  BF image (a) and the corresponding EDX analysis (b)~(d) of the plasma spheroidization TiB2/AlSi10Mg composite

    图  7  球化TiB2/AlSi10Mg复合粉界面图:(a)高分辨率透射电镜及快速傅里叶变换图;(b)~(d)相应的快速傅里叶逆变换图

    Figure  7.  Interfacial microstructure of the plasma spheroidization TiB2/AlSi10Mg composite powders: (a) HRTEM and FFT images; (b)~(d) the corresponding IFFT images

    图  8  AlSi10Mg和球化TiB2/AlSi10Mg粉末粒径分布:(a) AlSi10Mg;(b) TiB2/AlSi10Mg

    Figure  8.  Particle size distribution of the AlSi10Mg and TiB2/AlSi10Mg powders: (a) AlSi10Mg; (b) TiB2/AlSi10Mg

    图  9  不同粉末激光吸收率

    Figure  9.  Laser absorptivity of the TiB2, AlSi10Mg and TiB2/AlSi10Mg powders

    表  1  等离子体球化工艺参数

    Table  1.   Process parameters of the plasma spheroidization

    功率 / kW送粉器转速 / (r·min−1)粉体流速 / (g·min−1)鞘气(Ar/H2)/ (L·min−1)中心气Ar / (L·min−1)载气Ar / (L·min−1)
    30152055/15153
    下载: 导出CSV
  • [1] Pandey U, Purohit R, Agarwal P, et al. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today, 2017, 4: 5452 doi: 10.1016/j.matpr.2017.05.057
    [2] Wang Y H, Hu Q, Zhang J H, et al. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg. Powder Metall Technol, 2022, 40(2): 152

    王永慧, 胡强, 张金辉, 等. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素. 粉末冶金技术, 2022, 40(2): 152
    [3] Balcı Ö, Ağaoğulları D, Gökçe H, et al. Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloys Compd, 2014, 586: S78 doi: 10.1016/j.jallcom.2013.03.007
    [4] Wei K W, Wang Z M, Zeng X Y. Preliminary investigation on selective laser melting of Ti–5Al–2.5Sn α-Ti alloy: From single tracks to bulk 3D components. J Mater Process Technol, 2017, 244: 73
    [5] Li H, Ramezani M, Chen Z, et al. Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V. Trans Indian Inst Met, 2019, 72: 3201 doi: 10.1007/s12666-019-01785-y
    [6] Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surface Coat Technol, 2019, 378: 124993 doi: 10.1016/j.surfcoat.2019.124993
    [7] Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104: 2117 doi: 10.1007/s00170-019-03928-3
    [8] Salman O O, Brenne F, Niendorf T, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Proc, 2019, 45: 255 doi: 10.1016/j.jmapro.2019.07.010
    [9] Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technology, 2021, 39(6): 549 doi: 10.19591/j.cnki.cn11-1974/tf.2020040004

    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549 doi: 10.19591/j.cnki.cn11-1974/tf.2020040004
    [10] Sun S Y, Liu P, Hu J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM). Opt Laser Technol, 2019, 114: 158 doi: 10.1016/j.optlastec.2019.02.006
    [11] Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol, 2018, 349: 279 doi: 10.1016/j.surfcoat.2018.05.072
    [12] Xiong Z H, Liu S L, Li S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng:A, 2019, 740-741: 148 doi: 10.1016/j.msea.2018.10.083
    [13] Gu X H, Zhang J X, Fan X L, et al. Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 ℃. J Alloys Compd, 2019, 803: 314 doi: 10.1016/j.jallcom.2019.06.274
    [14] Yu T Y, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 doi: 10.1016/j.matdes.2019.108062
    [15] Teng X, Zhang G X, Zhao Y G, et al. Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting. Int J Adv Manuf Technol, 2019, 105: 2513 doi: 10.1007/s00170-019-04485-5
    [16] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol, 2019, 35: 270 doi: 10.1016/j.jmst.2018.09.004
    [17] Aboulkhair N T, Maskery I, Tuck C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol, 2016, 230: 88 doi: 10.1016/j.jmatprotec.2015.11.016
    [18] Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng: A, 2014, 590: 153 doi: 10.1016/j.msea.2013.10.023
    [19] Yuan P P, Gu D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D: Appl Phys, 2015, 48: 0353033
    [20] Wang X J, Wang X C, Yi X B, et al. Impact of powder characteristics on formation properties of selective laser melted Al–Si alloy. Shandong Sci, 2016, 29(2): 30 doi: 10.3976/j.issn.1002-4026.2016.02.007

    王小军, 王修春, 伊希斌, 等. 粉体特征对选区激光熔化Al–Si合金成型性能的影响. 山东科学, 2016, 29(2): 30 doi: 10.3976/j.issn.1002-4026.2016.02.007
    [21] Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373

    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373
    [22] Zou K, Deng C M, Liu M, et al. Research spray granulation and plasma spraying deposition mechanism of TiB2–TiC powders. Rare Met Mater Eng, 2019, 48(1): 213

    邹柯, 邓春明, 刘敏, 等. TiB2–SiC粉末喷雾造粒及其等离子喷涂沉积机理研究. 稀有金属材料与工程, 2019, 48(1): 213
    [23] Zou Y M, Wu Y S, Wang J Z, et al. Preparation, mechanical properties and cyclic oxidation behavior of the nanostructured NiCrCoAlY–TiB2 coating. Ceram Int, 2018, 44(16): 19362 doi: 10.1016/j.ceramint.2018.07.165
    [24] Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater, 2017, 129: 183 doi: 10.1016/j.actamat.2017.02.062
    [25] Kumar N, Gautam G, Gautam R K, et al. Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D, 2016, 97: 233 doi: 10.1007/s40033-015-0091-7
    [26] Alfaify A Y, Hughes J, Ridgway K. Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions. Add Manuf, 2018, 19: 197
    [27] Rohit T, Kurian A, Senthilkumaran K, et al. Studies on absorptivity and marangoni flow during laser sintering. Adv Mater Res, 2012, 622-623: 531 doi: 10.4028/www.scientific.net/AMR.622-623.531
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  32
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回