高温液态熔渣飞行及碰撞过程研究

王凯 仪垂杰 胡凤超 战胜

王凯, 仪垂杰, 胡凤超, 战胜. 高温液态熔渣飞行及碰撞过程研究[J]. 粉末冶金技术, 2022, 40(6): 535-540. doi: 10.19591/j.cnki.cn11-1974/tf.2020050018
引用本文: 王凯, 仪垂杰, 胡凤超, 战胜. 高温液态熔渣飞行及碰撞过程研究[J]. 粉末冶金技术, 2022, 40(6): 535-540. doi: 10.19591/j.cnki.cn11-1974/tf.2020050018
WANG Kai, YI Chui-jie, HU Feng-chao, ZHAN Sheng. Study on flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540. doi: 10.19591/j.cnki.cn11-1974/tf.2020050018
Citation: WANG Kai, YI Chui-jie, HU Feng-chao, ZHAN Sheng. Study on flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540. doi: 10.19591/j.cnki.cn11-1974/tf.2020050018

高温液态熔渣飞行及碰撞过程研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020050018
基金项目: 国家重点研发计划资助项目(2017YFB0603602-03)
详细信息
    通讯作者:

    E-mail: chuijieyi@vip.163.com

  • 中图分类号: TF09

Study on flight and collision process of molten blast furnace slag

More Information
  • 摘要: 对离心粒化后高温熔渣的飞行过程建立数学模型,通过Runge-Kutta方法对建立的数学模型进行离散求解。结果表明,熔渣液滴沿x方向飞行距离与液滴直径和初始速度成正比;由于空气绕流阻力和重力作用,熔渣液滴速度先降低后增加。对熔渣液滴撞壁后过剩反弹能进行分析,获得了熔渣液滴的临界撞击速度。结果表明,临界撞击速度为区间,存在上界和下界,且上界和下界同时随直径增加而降低。对初始速度为10、12和14 m·s‒1三种粒化工况进行实验,结果表明,由于熔渣液滴从粒化盘抛出时速度小于粒化盘边缘线速度,熔渣液滴实际下降距离大于其理论值;三种工况下熔渣液滴撞击速度在临界撞击速度区间内,均未产生粘结。
  • 图  1  粒化过程示意图(a)和熔渣液滴受力分析(b)

    Figure  1.  Schematic diagram of the granulating (a) and the force analysis for the slag droplets (b)

    图  2  熔渣液滴飞行轨迹(d=2 mm,t=1 s)

    Figure  2.  Flight path of the slag droplets (d=2 mm, t=1 s)

    图  3  熔渣液滴沿x轴飞行距离(t=1 s)

    Figure  3.  Flight distance of the slag droplets along x direction (t=1 s)

    图  4  熔渣液滴速度随时间变化图(d=2 mm)

    Figure  4.  Velocity of the slag droplets with the different times (d=2 mm)

    图  5  熔渣液滴撞击过剩反弹能与撞击速度关系(T=1400 ℃,α=60°)

    Figure  5.  Dependence between the excess rebound energy and the impact velocity (T=1400 ℃, α=60°)

    图  6  渣粒直径分布

    Figure  6.  Distribution of the slag diameter

    图  7  熔渣液滴沿y轴下降距离(x=1 m)

    Figure  7.  Falling distance of the slag droplets along y direction (x=1 m)

    图  8  撞击壁面时的速度(x=1 m)

    Figure  8.  Impact velocity of the slag droplets (x=1 m)

    表  1  熔渣化学成分(质量分数)

    Table  1.   Chemical composition of the blast slag %

    SiO2 CaO Al2O3 MgO FeO MnO TiO2 S 其他
    33.92 40.15 14.50 8.17 0.33 0.30 0.50 1.03 1.10
    下载: 导出CSV

    表  2  熔渣液滴直径与临界撞击速度关系

    Table  2.   Relationship between the slag droplet diameter and the critical impact velocity

    d / mm v* / (m·s‒1)
    0.5 0.45~227.32
    1.5 0.33~75.75
    2.5 0.27~45.44
    3.5 0.24~32.45
    4.5 0.22~25.23
    下载: 导出CSV

    表  3  实验工况

    Table  3.   Experimental condition

    序号 Dm / m D / m N / (r·min‒1) v0 / (m·s‒1)
    1 2 0.25 764 10
    2 2 0.25 917 12
    3 2 0.25 1069 14
    下载: 导出CSV
  • [1] Wu J J, Wang H, Zhu X, et al. Centrifugal granulation performance of liquid with various viscosities for heat recovery of blast furnace slag. Appl Therm Eng, 2015, 89: 494 doi: 10.1016/j.applthermaleng.2015.06.031
    [2] Worldsteel Association. Steel statistical yearbook [J/OL]. Worldsteel Association [2020-1]. Steel-Statistical-Yearbook-2019-concise-version. pdf (worldsteel. org)
    [3] Purwanto H, Akiyama T. Hydrogen production from biogas using hot slag. Int J Hydrogen Energy, 2006, 31(4): 491 doi: 10.1016/j.ijhydene.2005.04.021
    [4] Li P, Yu Q B, Qin Q, et al. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res, 2012, 51(49): 15872 doi: 10.1021/ie301678s
    [5] Pickering S J, Hay N, Roylance T F, et al. New process for dry granulation and heat recovery from molten blast-furnace slag. Ironmaking Steelmaking, 1985, 12(1): 14
    [6] Kashiwaya Y, In-nami Y, Akiyama T. Mechanism of the formation of slag particles by the rotary cylinder atomization. ISIJ Int, 2010, 50(9): 1252 doi: 10.2355/isijinternational.50.1252
    [7] Akiyama T, Toshio M, Jun-Ichiro Y, et al. Feasibility study of hydrogen generator with molten slag granulation. Steel Res Int, 2004, 75(2): 122 doi: 10.1002/srin.200405937
    [8] Xie D, Washington B M, Norgate T, et al. Dry granulation of slags–turning waste into valuable products. CAMP-ISIJ, 2005, 18(4): 1088
    [9] Xie D, Pan Y, Flann R, et al. Heat recovery from slag through dry granulation // 1st CSRP Annual Conference. Melbourne, 2007: 1
    [10] Yu Q B, Liu J X, Dou C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer. J Northeast Univ Nat Sci, 2009, 30(8): 1163 doi: 10.3321/j.issn:1005-3026.2009.08.025

    于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究. 东北大学学报(自然科学版), 2009, 30(8): 1163 doi: 10.3321/j.issn:1005-3026.2009.08.025
    [11] Liu J X, Yu Q B, Li P, et al. Experimental study on dry-granulation of molten blast furnace slag. Iron Steel, 2010, 45(2): 95 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.032

    刘军祥, 于庆波, 李朋, 等. 高炉渣干法粒化试验研究. 钢铁, 2010, 45(2): 95 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.032
    [12] Lin B, Wang H, Zhu X, et al. Crystallization properties of molten blast furnace slag at different cooling rates. Appl Therm Eng, 2016, 96: 432 doi: 10.1016/j.applthermaleng.2015.11.075
    [13] Zhu X, Ding B, Wang H, et al. Phase evolution of blast furnace slags with variation in the binary basicity in a variable cooling process. Fuel, 2018, 219: 132 doi: 10.1016/j.fuel.2018.01.075
    [14] Zhu X, Ding B, Wang H, et al. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Appl Therm Eng, 2018, 130: 1033 doi: 10.1016/j.applthermaleng.2017.11.080
    [15] Luo S Y, Fu J, Zhou Y M, et al. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy, 2017, 101: 1030 doi: 10.1016/j.renene.2016.09.072
    [16] Mi S, Xie K, Sun D, et al. Heat transfer and resistance characteristics between metallurgical slag particles and air. Chin J Nonferrous Met, 2015, 25(7): 1993 doi: 10.19476/j.ysxb.1004.0609.2015.07.032

    米沙, 谢锴, 孙岱, 等. 冶金渣颗粒与空气间的换热和阻力特性. 中国有色金属学报, 2015, 25(7): 1993 doi: 10.19476/j.ysxb.1004.0609.2015.07.032
    [17] Wang C L. Investigation on the flying of powder particles Ⅰ Trajectories of flying powder particles in static atmosphere. Powder Metall Technol, 2008, 26(4): 243

    王崇琳. 粉末飞行之研究I粉末在静止气体场中的飞行轨迹. 粉末冶金技术, 2008, 26(4): 243
    [18] Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int J Heat Mass Trans, 2012, 55(4): 1343 doi: 10.1016/j.ijheatmasstransfer.2011.09.005
    [19] Ni J J, Yu G S, Guo Q H, et al. Submodel for predicting slag deposition formation in slagging gasification systems. Energy Fuels, 2011, 25(3): 1004 doi: 10.1021/ef101696a
    [20] Liu J X, Yu Q B, Duan W J, et al. Experimental investigation on ligament formation for molten slag granulation. Appl Therm Eng, 2014, 73(1): 888 doi: 10.1016/j.applthermaleng.2014.08.042
    [21] Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags. Energy, 2014, 76: 761 doi: 10.1016/j.energy.2014.08.073
    [22] Ding B, Wang H, Zhu X, et al. Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process. Energy Fuels, 2016, 30(4): 3331 doi: 10.1021/acs.energyfuels.5b03000
    [23] Han C, Chen M, Zhang W D, et al. Viscosity model for iron blast furnace slags in SiO2–Al2O3–CaO–MgO system. Steel Res Int, 2015, 86(6): 678 doi: 10.1002/srin.201400340
    [24] Wang L M, Yuan Y L, Shao Y M, et al. Chatter analysis about roll grinder of twenty-high rolling mill in grinding process with grinding wheel dynamic imbalance fault. Chin J Eng, 2015, 37(Suppl1): 78

    王利明, 袁意林, 邵毅敏, 等. 二十辊轧机轧辊磨床砂轮动不平衡对磨削颤振的影响. 工程科学学报, 2015, 37(suppl1): 78
    [25] Dhirhi R, Prasad K, Shukla A, et al. Experimental study of rotating dry slag granulation unit: Operating regimes, particle size analysis and scale up. Appl Therm Eng, 2016, 107: 898 doi: 10.1016/j.applthermaleng.2016.07.049
    [26] Wang L Y, Sun W Q, Li X L, et al. Flight dynamics and sensible heat recovery of granulated blast furnace slag. Open Fuels Energy Sci J, 2015, 8: 356 doi: 10.2174/1876973X01508010356
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  39
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回