VIGA-CC法制备球形Ti-35.8Al-18.4Nb合金粉末及其性能研究

赵少阳 王利卿 谈萍 沈垒 李增峰 殷京瓯

赵少阳, 王利卿, 谈萍, 沈垒, 李增峰, 殷京瓯. VIGA-CC法制备球形Ti-35.8Al-18.4Nb合金粉末及其性能研究[J]. 粉末冶金技术, 2020, 38(6): 443-448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060002
引用本文: 赵少阳, 王利卿, 谈萍, 沈垒, 李增峰, 殷京瓯. VIGA-CC法制备球形Ti-35.8Al-18.4Nb合金粉末及其性能研究[J]. 粉末冶金技术, 2020, 38(6): 443-448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060002
ZHAO Shao-yang, WANG Li-qing, TAN Ping, SHEN Lei, LI Zeng-feng, YIN Jing-ou. Preparation and properties of spherical Ti-35.8Al-18.4Nb alloy powders by VIGA-CC method[J]. Powder Metallurgy Technology, 2020, 38(6): 443-448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060002
Citation: ZHAO Shao-yang, WANG Li-qing, TAN Ping, SHEN Lei, LI Zeng-feng, YIN Jing-ou. Preparation and properties of spherical Ti-35.8Al-18.4Nb alloy powders by VIGA-CC method[J]. Powder Metallurgy Technology, 2020, 38(6): 443-448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060002

VIGA-CC法制备球形Ti-35.8Al-18.4Nb合金粉末及其性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020060002
基金项目: 

国家重点研究计划资助项目 2017YFB0305800

详细信息
    通讯作者:

    谈萍, E-mail: tanping@c-nin.com

  • 中图分类号: TF122

Preparation and properties of spherical Ti-35.8Al-18.4Nb alloy powders by VIGA-CC method

More Information
  • 摘要: 以真空自耗电弧熔炼的Ti-35.8Al-18.4Nb(质量分数)合金铸锭为原料,采用水冷铜坩埚真空感应熔炼气雾化制粉技术(water-cooled copper crucible vacuum induction melting-gas atomizing,VIGA-CC)制备球形Ti-35.8Al-18.4Nb合金粉末,利用振动筛分法、扫描电子显微镜(scanning electron microscope,SEM)观察、X射线衍射(X-ray diffraction,XRD)分析等手段对所制备的粉末进行性能表征。结果表明,VIGA-CC技术制备的粉末粒度分布较宽,主要分布在45~150 μm之间,呈正态分布,其中粒径不高于45 μm粉末收得率为15.8%,粒径不低于150 μm粉末收得率为12%;粉末流动性为27.2[s·(50 g)-1],粉末中氧质量分数的增量小于0.01×10-6,粉末整体氧质量分数小于0.06×10-6;TiAlNb合金粉末主要以γ(TiAl)相和α2(Ti3Al)相为主,随着粉末粒径的减小,冷却速率逐渐提高,γ(TiAl)相逐渐减少,α2(Ti3Al)相逐渐增加;大颗粒粉末表面为枝状冷凝组织,小颗粒粉末为光滑表面。
  • 图  1  VIGA-CC气雾化法制备Ti‒35.8Al‒18.4Nb粉末流程图

    Figure  1.  Flow diagram of the Ti‒35.8Al‒18.4Nb powder preparation by VIGA-CC

    图  2  VIGA-CC法制备TiAl Nb合金粉末的显微形貌(a)与粒度分布(b)

    Figure  2.  Microstructure (a) and particle size distribution (b) of the TiAl Nb alloy powders prepared by VIGA-CC

    图  3  不同粒度TiAlNb粉末的表面形貌:(a)180μm;(b)100μm;(c)44μm;(d)图 3(a)局部放大;(e)图 3(b)局部放大;(f)图 3(c)的局部放大

    Figure  3.  Surface images of the TiAlNb powders in the different particle sizes: (a) 180μm; (b) 100μm; (c) 44μm; (d) the amplification of Fig. 3(a); (e) the amplification of Fig. 3(b); (f) the amplification of Fig. 3(c)

    图  4  不同粒度TiAlNb粉末的截面形貌:(a)180μm;(b)100μm;(c)44μm;(d)图 3(a)局部放大;(e)图 3(b)局部放大;(f)图 3(c)的局部放大

    Figure  4.  Cross-sectional images of the TiAlNb powder in the different particle sizes: (a) 180 μm; (b) 100 μm; (c) 44 μm; (d) the amplification of Fig. 3(a); (e) the amplification of Fig. 3(b); (f) theamplification of Fig. 3(c)

    图  5  不同粒度TiAlNb粉末的X射线衍射分析

    Figure  5.  XRD analysis of the TiAlNb powders in the different particle sizes

    表  1  VIGA-CC和PREP工艺所制TiAlNb粉末性能

    Table  1.   Performance of the TiAlNb powders prepared by VIGA-CC and PREP

    制粉技术松装密度/(g·cm-3)振实密度/(g·cm-3)流动性/[s·(50 g)-1]球形度/%
    VIGA-CC2.542.9027.491
    prep[7]2.572.6133.092
    下载: 导出CSV

    表  2  VIGA-CC制备TiAlNb粉末的化学成分(质量分数)

    Table  2.   Chemical composition of the TiAlNb powdersprepared by VIGA-CC %

    CNO(粗粉)O(细粉)AlNbTi
    0.0510.1300.040 0.06835.80018.400余量
    下载: 导出CSV
  • [1] Zou G S, Bai H L, Xie E H, et al. Solid diffusion bonding of Ti-22Al-25Nb O phase alloy. Chin J Nonferrous Met, 2018, 18(4): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200804001.htm

    邹贵生, 白海林, 谢二虎, 等. O相合金Ti-22Al-25Nb固态扩散连接. 中国有色金属学报, 2018, 18(4): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200804001.htm
    [2] Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012040.htm

    杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012040.htm
    [3] Zhang J W, Li S Q, Liang X B, et al. Research and application of Ti3Al and Ti2AlNb based alloys. Chin J Nonferrous Met, 2010, 20(Suppl 1): 336 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ2010S1075.htm

    张建伟, 李世琼, 梁晓波, 等. Ti3Al和Ti2AlNb基合金的研究与应用. 中国有色金属学报, 2010, 20(增刊1): 336 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ2010S1075.htm
    [4] Zhang G Q, Liu Y F, Liu N, et al. Progress in powder metallurgy TiAl-based intermetallics. Aeronaut Manuf Technol, 2019, 62(22): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201922022.htm

    张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展. 航空制造技术, 2019, 62(22): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201922022.htm
    [5] Sun S J. TiAl alloy parts produced by additive manufacturing method will be used in turbine blade of aircraft engine, Powder Metall Ind, 2015, 25(1): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501028.htm

    孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501028.htm
    [6] Mao W, Li X, Han F, et al. Research progress of powder metallurgy technology of high quality TiAl-Nb based alloys. Hot Working Technol, 2019, 48(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201908002.htm

    毛旺, 李轩, 韩枫, 等. 高品质TiAl-Nb基合金的粉末冶金技术研究进展. 热加工工艺, 2019, 48(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201908002.htm
    [7] He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAI pre-alloyed powder by PREP and its densification microstructure research. Rare Met Mater Eng, 2014, 43(11): 2768 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201411042.htm

    贺卫卫, 汤慧萍, 刘咏, 等. PREP法制备高温TiAl预合金粉末及其致密化坯体组织研究. 稀有金属材料与工程, 2014, 43(11): 2768 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201411042.htm
    [8] He W W, Tang H P, Chen B K, et al. Study on process and particle size prediction on high-Nb TiAl powder produced by PREP. Titanium Ind Prog, 2019, 36(3): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201903011.htm

    贺卫卫, 汤慧萍, 陈斌科, 等. PREP法制备高铌TiAl粉末工艺研究及粒度预测. 钛工业进展, 2019, 36(3): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201903011.htm
    [9] Du Y L, Ou Y Y, Lu X X, et al. Research progress on additive manufacturing of TiAl intermetallic compound. J Xuzhou Inst Technol Nat Sci, 2016, 31(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG201602001.htm

    杜宇雷, 欧园园, 卢晓阳, 等. TiAl金属间化合物的增材制造研究进展. 徐州工程学院学报(自然科学版), 2016, 31(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG201602001.htm
    [10] Xue C. Research on the Microstructure Evolution and Mechanical Property of the Isothermally Forged Ti-22Al-25Nb Alloys[Dissertation]. Xi'an: Northwest Ploytechnic University, 2014

    薛晨. 等温锻造Ti-22Al-25Nb合金的显微组织演变与力学性能研究[学位论文]. 西安: 西北工业大学, 2014
    [11] Zhang Z X. Research on Microstructures and Mechanical Properties of Ti-22.5Al-xNb Alloys[Dissertation]. Harbin: Harbin Institute of Technology, 2011

    张振兴. Ti-22.5Al-xNb合金组织与性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2011
    [12] Zan X. Dynamic Mechanical Behavior of TiAl Intermetallic Compound at High Temperature[Dissertation]. Hefei: University of Science and Technology of China, 2008

    昝祥. TiAl金属间化合物高温动态力学行为[学位论文]. 合肥: 中国科学技术大学, 2008
    [13] Tourret D, Reinhart G, Gandin Ch A, et al. Gas atomization of Al-Ni powders: Solidification modeling and neutron diffraction analysis. Acta Mater, 2011, 59(17): 6658 doi: 10.1016/j.actamat.2011.07.023
    [14] Sun Y Q. Surface relief and the displacive transformation to the lamellar microstructure in TiAl. Philos Mag Lett, 1998, 78(4): 297 doi: 10.1080/095008398177878
    [15] Jones S A, Kaufmann M J. Phase equilibria and transformations in intermediate titanium aluminum alloys. Acta Metall Mater, 1993, 41(2): 387 doi: 10.1016/0956-7151(93)90069-5
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  96
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 刊出日期:  2020-12-27

目录

    /

    返回文章
    返回