金属粉末特性对选区激光熔化工艺及其制件性能影响

李克峰 施麒 毛新华 谭冲 刘辛

李克峰, 施麒, 毛新华, 谭冲, 刘辛. 金属粉末特性对选区激光熔化工艺及其制件性能影响[J]. 粉末冶金技术, 2022, 40(6): 499-509. doi: 10.19591/j.cnki.cn11-1974/tf.2020060005
引用本文: 李克峰, 施麒, 毛新华, 谭冲, 刘辛. 金属粉末特性对选区激光熔化工艺及其制件性能影响[J]. 粉末冶金技术, 2022, 40(6): 499-509. doi: 10.19591/j.cnki.cn11-1974/tf.2020060005
LI Ke-feng, SHI Qi, MAO Xin-hua, TAN Chong, LIU Xin. Effect of metallic powder properties on selective laser melting technology and component performances[J]. Powder Metallurgy Technology, 2022, 40(6): 499-509. doi: 10.19591/j.cnki.cn11-1974/tf.2020060005
Citation: LI Ke-feng, SHI Qi, MAO Xin-hua, TAN Chong, LIU Xin. Effect of metallic powder properties on selective laser melting technology and component performances[J]. Powder Metallurgy Technology, 2022, 40(6): 499-509. doi: 10.19591/j.cnki.cn11-1974/tf.2020060005

金属粉末特性对选区激光熔化工艺及其制件性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020060005
基金项目: 广州市科技计划资助项目(201906040007);广东省自然科学基金资助项目(2018A030313127);广东省科学院院属骨干科研机构创新能力建设专项资助项目(2018GDASCX-0117)
详细信息
    通讯作者:

    E-mail: liuxin@gdinm.com

  • 中图分类号: TF122

Effect of metallic powder properties on selective laser melting technology and component performances

More Information
  • 摘要: 高品质金属粉末是选区激光熔化(selective laser melting,SLM)制备高性能制件的重要基础。粉体特性对选区激光熔化技术的影响及其机理研究是理解选区激光熔化技术不可或缺的重要组成部分。本文从粉末物理和化学特性出发,论述了粉末特性对选区激光熔化工艺、制件微观组织与性能的影响。结果表明,粉末的物理特性,尤其是粉末形貌和粉末粒度分布能显著影响其流动性和粉末床堆密度等关键工艺特性;而粉末的化学成分,特别是杂质成分,是影响制件相组成和微观组织的重要因素。在此基础上,本文进一步介绍了选区激光熔化过程中高能量源与粉末颗粒的冶金作用机理研究进展。
  • 图  1  不同粉末制备技术制备的Ti‒6Al‒4V合金粉末形貌[5]

    Figure  1.  Morphologies of the Ti‒6Al‒4V powders fabricated by the various methods[5]

    图  2  气雾化与水雾化316L不锈钢粉末形貌及打印样件截面组织图[6]

    Figure  2.  GA and WA powder morphologies and the cross-sectional microstructures of the 316L stainless steels[6]

    图  3  Inconel 718合金粉末形貌[11]:(a)原始粉末;(b)循环使用10次后粉末

    Figure  3.  Morphologies of the Inconel 718 alloy powders[11]: (a) the virgin powders; (b) the powders after 10-time-cycle

    图  4  不同粒径分布的316L粉末松装密度及粉床密度[14]

    Figure  4.  Apparent density and powder bed density of the 316L powders in different size distributions and the as-SLM samples[14]

    图  5  不同粉末供应商提供的Ti‒6Al‒4V粉末粒径分布[15]

    Figure  5.  Powder size distributions of the Ti‒6Al‒4V alloy powders from the different vendors[15]

    图  6  相同打印参数下不同Ti‒6Al‒4V粉末选区激光熔化打印样品显微形貌[15]

    Figure  6.  Microstructures of the SLM Ti‒6Al‒4V alloys using the same processing parameters[15]

    图  7  不同粒度分布的316L不锈钢粉末在不同激光能量密度下零件的相对密度[18]

    Figure  7.  Relative densities of the samples in the different laser energy densities using 316L alloy powders in the different powder size distributions[18]

    图  8  热成像相机拍摄的不同Ti‒6Al‒4V粉末床静态热传导状态[15]

    Figure  8.  Static thermal conducting images of the various of Ti‒6Al‒4V powder beds[15]

    图  9  选区激光熔化制备不同粒径分布Co‒Cr‒W合金退火后样品电子背散射衍射微观组织分析[21]

    Figure  9.  Electron back-scattered diffraction analysis of the Co‒Cr‒W alloys after heat treatment prepared by SLM using the powders with the different particle size distribution[21]

    图  10  316L不锈钢粉末粒径分布(a)及其选区激光熔化制件力学性能(b)[22]

    Figure  10.  Particle size distribution of the 316L powders (a) and the tensile properties of the corresponding SLM samples (b)[22]

    图  11  不同粒径分布对选区激光熔化打印过程中熔池的影响[17]:(a)采用细粒径粉末的熔池形貌平滑;(b)采用粗粒径粉末的熔池边缘轮廓波动较大

    Figure  11.  Powder size effect on the configuration of melting pool during the SLM process[17]: (a) smooth boundary with the fine powders; (b) rough boundary with the coarse powders

    图  12  不同供应商Ti‒6Al‒4V粉末的休止角(a)与粉末床密度(b)[15]

    Figure  12.  AOR (a) and PBD (b) of the Ti‒6Al‒4Vpowders from the different vendors[15]

    图  13  23种选区激光熔化用金属光学粉末流动性评价指标[23]:(a)豪斯纳比;(b)体积膨胀率

    Figure  13.  Optical evaluated flowability for the SLM powders[23]: (a) Hausner ratio; (b) volume expansion ratio

    图  14  激光与材料相互作用示意图[33]

    Figure  14.  Interactions between high energy laser and working materials[33]

    图  15  基于第一性原理射线追踪模型(a)及其局部细节(b)和粒度分布对激光吸收系数的影响(c)[34]

    Figure  15.  Ray-tracing model (a), the local reflection details (b), and the effect of powder size distribution on the laser absorptivity (c)[34]

    图  16  粉末熔化和熔池凝固3D模拟模型[16]

    Figure  16.  Multiphysics simulations on the powder melting and melting pool solidification[16]

    图  17  原位X射线高速成像技术观察激光与粉末相互作用及其对组织的影响[36]

    Figure  17.  In-situ X-ray imaging of the laser-powder interactions and the consequent effects on the microstructures[36]

  • [1] Tang H P. Metal Materials for 3D Printing. Beijing: Chemical Industry Press, 2020

    汤慧萍. 3D打印金属材料. 北京: 化学工业出版社, 2020
    [2] U. S. Department of Energy. The quadrennial technology review [J/OL]. U. S. Department of Energy (2015-12-13)[2020-05-19].https://www.energy.gov/quadrennial-technology-review-0
    [3] Royal Academy of Engineering. Additive manufacturing: opportunities and constraints [J/OL]. Royal Academy of Engineering (2017-05-23)[2020-05-19].https://www.raeng.org.uk/policy/policy-themes/engineering-in-society
    [4] Olakanmi E O. Effect of mixing time on the bed density, and microstructure of selective laser sintered aluminium powders. Mater Res, 2012, 15(2): 167 doi: 10.1590/S1516-14392012005000031
    [5] Zou L M, Mao X H, Hu K, et al. Quantitative analysis for the shape indicator of spherical Ti‒6Al‒4V powder by image analysis method. Rare Met Mater Eng, 2020, 49(3): 950

    邹黎明, 毛新华, 胡可, 等. 采用图像分析技术对球形Ti‒6Al‒4V粉末粒形的定量分析. 稀有金属材料与工程, 2020, 49(3): 950
    [6] Li R, Shi Y, Wang Z, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl Surf Sci, 2010, 256(13): 4350 doi: 10.1016/j.apsusc.2010.02.030
    [7] Irrinki H, Dexter M, Barmore B, et al, Effects of powder attributes and laser powder bed fusion (L-PBF) process conditions on the densification and mechanical properties of 17-4 PH stainless steel. JOM, 2016, 68: 860
    [8] Ahsan M N, Pinkerton A J, Moat R J, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Mater Sci Eng A, 2011, 528(25-26): 7648 doi: 10.1016/j.msea.2011.06.074
    [9] Strondl A, Lyckfeldt O, Brodin H, et al. Characterization and control of powder properties for additive manufacturing. JOM, 2015, 67(3): 549 doi: 10.1007/s11837-015-1304-0
    [10] Sun Y Y, Gulizia S, Oh C H, et al. Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications. JOM, 2015, 67(3): 564 doi: 10.1007/s11837-015-1301-3
    [11] Nguyen Q B, Nai M L S, Zhu Z, et al. Characteristics of inconel powders for powder-bed additive manufacturing. Engineering, 2017, 3(5): 695 doi: 10.1016/J.ENG.2017.05.012
    [12] Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of in situ Ti–TiB2composite materials produced by selective laser melting. J Mater Sci Technol, 2015, 31(10): 1001 doi: 10.1016/j.jmst.2015.08.007
    [13] Tapia G, Elwany A H, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf, 2016, 12: 282
    [14] Liu B C, Wildman R, Tuck C, et al. Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process // Proceedings of Solid Freeform Fabrication. Austin, 2011: 227
    [15] Gu H F, Gong H J, Dilipet J J S, et al. Effects of powder variation on the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting // Proceedings of Solid Freeform Fabrication. Austin, 2014: 470
    [16] Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater, 2016, 108: 36 doi: 10.1016/j.actamat.2016.02.014
    [17] Lee Y S, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing // Proceedings of Solid Freeform Fabrication. Austin, 2015, 1154
    [18] Spierings A B, Levy G. Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades // Proceedings of Solid Freeform Fabrication. Austin, 2015, 342
    [19] Averyanova M, Bertrand P, Verquin B. Effect of initial powder properties on final microstructure and mechanical properties of parts manufactured by selective laser melting // Proceedings of the 21st International DAAAM Symposium. Vienna, 2010: 15312
    [20] Olakanmi E O, Cochrane R F, Dalgarno K W. Spheroidisation and oxide disruption phenomena in direct selective laser melting (SLM) of pre-alloyed Al‒Mg and Al‒Si powders // TMS 2009-138th Annual Meeting and Exhibition. San Francisco, 2009: 371
    [21] Li K F, Mao X H, Khanlari K, et al. Effects of powder size distribution on the microstructural and mechanical properties of a Co‒Cr‒W‒Si alloy fabricated by selective laser melting. J Alloys Compd, 2020, 825: 153973 doi: 10.1016/j.jallcom.2020.153973
    [22] Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J, 2011, 17(3): 195 doi: 10.1108/13552541111124770
    [23] Spierings A B, Voegtlin M, Bauer T, et al. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog Addit Manuf, 2016, 1(1-2): 9 doi: 10.1007/s40964-015-0001-4
    [24] Hausner H H. Friction condition in a mass of metal powder. Int J Powder Metall, 1967, 3(4): 7
    [25] Wong A C Y. Characterisation of the flowability of glass beads by bulk densities ratio. Chem Eng Sci, 2000, 55(18): 3855 doi: 10.1016/S0009-2509(00)00048-8
    [26] Dave W, Ethan P. Moisture analysis in metal powders using Karl Fischer Titration with oven desorption [J/OL]. NSL Analytical (2021-11-12)[2022-07-06].https://www.nslanalytical.com/wp-content/uploads/2021/11/IMAT-2021-Karl-Fischer-Moisture-Presentation.pdf
    [27] Vluttert N. The Absorption of Moisture by Metal Powder in a Humid Environment and the Effects on its Composition [Dissertation]. Enschede: University of Twente, 2016
    [28] Starr T, Rafi K, Stucker B, et al. Controlling phase composition in selective laser melted stainless steels // Proceedings of Solid Freeform Fabrication. Austin, 2012: 439
    [29] Simchi A. The role of particle size on the laser sintering of iron powder. Metall Mater Trans B, 2004, 35(5): 937 doi: 10.1007/s11663-004-0088-3
    [30] Tang H P, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti‒6Al‒4V by selective electron beam melting. JOM, 2015, 67(3): 555 doi: 10.1007/s11837-015-1300-4
    [31] Yan M, Xu W, Dargusch M S, et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall, 2014, 57: 251 doi: 10.1179/1743290114Y.0000000108
    [32] Kruth J P, Froyen L, Vaerenbergh J V, et al. Selective laser melting of iron-based powder. J Mater Process Technol, 2004, 149(1-3): 616 doi: 10.1016/j.jmatprotec.2003.11.051
    [33] Otto A, Schmidt M. Towards a universal numerical simulation model for laser material processing. Physics Procedia, 2010, 5: 35 doi: 10.1016/j.phpro.2010.08.120
    [34] Boley C D, Khairallah S A, Rubenchik A M. Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt, 2015, 54(9): 2477 doi: 10.1364/AO.54.002477
    [35] Gusarov A V, Laoui T, Froyen L, et al. Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transfer, 2003, 46(6): 1103 doi: 10.1016/S0017-9310(02)00370-8
    [36] Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun, 2018, 9(1): 1355 doi: 10.1038/s41467-018-03734-7
  • 加载中
图(17)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  125
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回