低铬粉末冶金烧结硬化钢的显微组织及力学性能

杨洁 刘乐 黄晓琳

杨洁, 刘乐, 黄晓琳. 低铬粉末冶金烧结硬化钢的显微组织及力学性能[J]. 粉末冶金技术, 2023, 41(4): 345-349, 355. doi: 10.19591/j.cnki.cn11-1974/tf.2020060008
引用本文: 杨洁, 刘乐, 黄晓琳. 低铬粉末冶金烧结硬化钢的显微组织及力学性能[J]. 粉末冶金技术, 2023, 41(4): 345-349, 355. doi: 10.19591/j.cnki.cn11-1974/tf.2020060008
YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. doi: 10.19591/j.cnki.cn11-1974/tf.2020060008
Citation: YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. doi: 10.19591/j.cnki.cn11-1974/tf.2020060008

低铬粉末冶金烧结硬化钢的显微组织及力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020060008
详细信息
    通讯作者:

    E-mail: ellin.yang@hoganas.com

  • 中图分类号: TF121

Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content

More Information
  • 摘要: 烧结硬化作为一种经济有效的高强度粉末冶金零件生产工艺,可以通过控制烧结后冷却速度影响显微组织(马氏体含量),从而改善材料的最终性能。本文介绍了一种新开发的低Cr预合金烧结硬化材料AstaloyTM CrA,研究其在不同烧结温度和冷却速度下的力学性能和显微组织,并与常见的粉末冶金烧结硬化钢Distaloy® DH进行对比。研究表明,在压制密度为7.0 g·cm−3并添加同等含量碳的条件下,添加质量分数2%Ni的AstaloyTM CrA混粉淬透性更高,获得比其他两种材料更高的马氏体含量及表观硬度。AstaloyTM CrA在1250 ℃烧结、冷却速度为3 ℃·s−1时,硬度最高达到HRC 38;在1250 ℃烧结,冷却速度为1 ℃·s−1时,强度和韧性最佳。
  • 图  1  风扇转速与试样名义冷速关系曲线

    Figure  1.  Relationship of cooling fan rotation frequency and nominal cooling rate for the furnace

    图  2  不同烧结温度和冷速下样品宏观硬度

    Figure  2.  Macro hardness of the specimens at the different sintering temperatures and cooling rates

    图  3  不同烧结温度和冷速下样品的屈服强度

    Figure  3.  Yield Strength of the specimens at the different sintering temperatures and cooling rates

    图  4  不同烧结温度和冷速下试样的极限抗拉强度

    Figure  4.  Ultra tensile strength of the specimens at the different sintering temperatures and cooling rates

    图  5  不同烧结温度和冷速下试样的延伸率

    Figure  5.  Elongation of the specimens at the different sintering temperatures and cooling rates

    图  6  不同烧结温度和冷速下试样的冲击功

    Figure  6.  Impact energy of the specimens at the different sintering temperatures and cooling rates

    图  7  DH在不同烧结温度和冷速下显微组织:(a)1120 ℃,1 ℃·s−1;(b)1120 ℃,3 ℃·s−1;(c)1250 ℃,1 ℃·s−1;(d)1250 ℃,3 ℃·s−1

    Figure  7.  Microstructures of DH specimens at the different sintering temperatures and cooling rates: (a) 1120 ℃, 1 ℃·s−1; (b) 1120 ℃, 3 ℃·s−1; (c) 1250 ℃, 1 ℃·s−1; (d) 1250 ℃, 3 ℃·s−1

    图  8  CrA2Ni在不同烧结温度和冷速下显微组织:(a)1120 ℃,1 ℃·s−1;(b)1120 ℃,3 ℃·s−1;(c)1250 ℃,1 ℃·s−1;(d)1250 ℃,3 ℃·s−1

    Figure  8.  Microstructures of CrA2Ni specimens at the different sintering temperatures and cooling rates: (a) 1120 ℃, 1 ℃·s−1; (b) 1120 ℃, 3 ℃·s−1; (c) 1250 ℃, 1 ℃·s−1; (d) 1250 ℃, 3 ℃·s−1

    图  9  CrA1Cu在不同烧结温度和冷速下显微组织:(a)1120 ℃,1 ℃·s−1;(b)1120 ℃,3 ℃·s−1;(c)1250 ℃,1 ℃·s−1;(d)1250 ℃,3 ℃·s−1

    Figure  9.  Microstructures of CrA1Cu specimens at the different sintering temperatures and cooling rates: (a) 1120 ℃, 1 ℃·s−1; (b) 1120 ℃, 3 ℃·s−1; (c) 1250 ℃, 1 ℃·s−1; (d) 1250 ℃, 3 ℃·s−1

    表  1  三种混粉的化学成分及粉末名称

    Table  1.   Chemical composition and name of the three mixture powders

    混粉编号粉末名称成分(质量分数) / %
    FeCuMoNiCrC
    1DH余量2**1.5*0.6
    2CrA2Ni余量21.8*0.6
    3CrA1Cu余量11.8*0.6
    注:*预合金;**扩散粘结
    下载: 导出CSV

    表  2  不同烧结温度下样品烧结密度和碳氧含量

    Table  2.   Sintered density, carbon content, and oxygen content of specimens sintered at different temperatures

    粉末名称 烧结密度 / (g·cm−3) 烧结后碳质量分数 / % 烧结后氧质量分数 / %
    1120 ℃ 1250 ℃ 1120 ℃ 1250 ℃ 1120 ℃ 1250 ℃
    DH 6.93 6.99 0.57 0.52 0.01 0.01
    CrA2Ni 7.04 7.12 0.54 0.50 0.04 0.01
    CrA1Cu 6.97 7.04 0.57 0.51 0.04 0.01
    下载: 导出CSV

    表  3  不同烧结温度和冷速下拉伸试棒的马氏体含量

    Table  3.   Martensite content of the tensile strength specimens at the different sintering temperatures and cooling rates

    粉末名称 马氏体体积分数 / %
    1120 ℃ 1250 ℃
    1 ℃·s−1 3 ℃·s−1 1 ℃·s−1 3 ℃·s−1
    DH 20.0 80.0 12.5 75.0
    CrA2Ni 41.5 77.5 32.0 87.0
    CrA1Cu 22.5 64.0 27.5 62.5
    下载: 导出CSV
  • [1] Akpan E, L' Esperance G, Roy L. Case histories with sinter hardening low alloy steel powder // Advances in Powder Metallurgy & Particulate Materials. Princeton, 1993: 289
    [2] Höganäs A B. Internal Handbook for Sintered Component, Metallography. Sweden: Höganäs A B, 2015
    [3] Engström U. Evaluation of sinter hardening of different PM materials // Advances in Powder Metallurgy & Particulate Materials. Princeton, 2000: 5
    [4] Engström U. Cost effective material for sinter hardening applications // World Powder Metallurgy Meeting. Washington, 2008
    [5] Günen M, Bakkaloğlu A. Influence of sinter-hardening on microstructures and mechanical properties of AstaloyTM Mo-based steels. Mater Lett, 2019, 251: 201 doi: 10.1016/j.matlet.2019.05.066
    [6] Nyberg I, Schmidt M, Thorne P, et al. Effect of sintering time and cooling rate on sinterhardenable materials // Powder Metallurgy & AMP, Particulate Materials Meeting 2003. Las Vegas, 2003: part5 101
    [7] Lindskog P. Controlling the hardenability of sintered steels. Powder Metall, 1970, 13(6): 280
    [8] ASM International. ASM Handbook, Vol. 7: Powder Metal Technologies and Applications. Ohio: ASM International, 1998
    [9] Maroli B, Berg S, Larsson M, et al. Performance of sinter-hardened P/M steels [J/OL]. ResearchGate GmbH [2020-06-22]. https://www.researchgate.net/publication/266289508
    [10] Engström U. High performance materials for sinter hardening applications // World Powder Metallurgy Conference. Florence, 2010
    [11] Larsson C, Engström U. High performance sinter hardening materials for synchronizing hubs // EURO Powder Metallurgy Conference. Barcelona, 2011
    [12] Chasoglou D, High performance pm steels through sinter hardening // EURO Powder Metallurgy Conference. Milano, 2017
    [13] Sheikhi M K, Solimanjad N. Effects of sinter hardening technology on homogeneous and heterogeneous microstructures. Powder Metall, 2013, 56(3): 245 doi: 10.1179/1743290112Y.0000000050
    [14] Xin X, Han Y J, Cao H B. A competitive sinter-hardening solution for industrial manufacturing // APMA Conference. Xiamen, 2013
    [15] Yang J, Wang J, Niu S, et al. Sinter-hardening PM steels with improved dimensional consistency for high performance components. Powder Metall Technol, 2015, 33(1): 22 doi: 10.19591/j.cnki.cn11-1974/tf.2015.01.006

    杨洁, 王军, 牛森, 等. 烧结硬化粉末冶金钢在高性能零件中的应用. 粉末冶金技术, 2015, 33(1): 22 doi: 10.19591/j.cnki.cn11-1974/tf.2015.01.006
    [16] Herring D. Grain size and its influence on materials. Ind Heat, 2005, 72(8): 20
    [17] Xu X, Han Y J, Niu S, et al. Sinter-hardening solutions for industrial manufacturing. Powder Metall Ind, 2016, 26(3): 78 doi: 10.13228/j.boyuan.issn1006-6543.20150053

    徐信, 韩云娟, 牛森, 等. 适用于工业制造的烧结硬化解决方案. 粉末冶金工业, 2016, 26(3): 78 doi: 10.13228/j.boyuan.issn1006-6543.20150053
    [18] Cheng C H. Study on the parameters affecting the gear properties of sinter hardening. Powder Metall Technol, 2005, 23(3): 208 doi: 10.3321/j.issn:1001-3784.2005.03.011

    郑朝旭. 影响烧结硬化合金钢齿轮特性之参数探讨. 粉末冶金技术, 2005, 23(3): 208 doi: 10.3321/j.issn:1001-3784.2005.03.011
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  47
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-11
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回