燃气舵用钨渗铜X射线探伤条纹显示分析

林冰涛 肖任勤 赵帅 张保红 徐吉路 孙晓霞

林冰涛, 肖任勤, 赵帅, 张保红, 徐吉路, 孙晓霞. 燃气舵用钨渗铜X射线探伤条纹显示分析[J]. 粉末冶金技术, 2020, 38(6): 423-428, 448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060012
引用本文: 林冰涛, 肖任勤, 赵帅, 张保红, 徐吉路, 孙晓霞. 燃气舵用钨渗铜X射线探伤条纹显示分析[J]. 粉末冶金技术, 2020, 38(6): 423-428, 448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060012
LIN Bing-tao, XIAO Ren-qin, ZHAO Shuai, ZHANG Bao-hong, XU Ji-lu, SUN Xiao-xia. Analysis on X-ray flaw detection stripe of tungsten infiltrated copper used in gas rudder[J]. Powder Metallurgy Technology, 2020, 38(6): 423-428, 448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060012
Citation: LIN Bing-tao, XIAO Ren-qin, ZHAO Shuai, ZHANG Bao-hong, XU Ji-lu, SUN Xiao-xia. Analysis on X-ray flaw detection stripe of tungsten infiltrated copper used in gas rudder[J]. Powder Metallurgy Technology, 2020, 38(6): 423-428, 448. doi: 10.19591/j.cnki.cn11-1974/tf.2020060012

燃气舵用钨渗铜X射线探伤条纹显示分析

doi: 10.19591/j.cnki.cn11-1974/tf.2020060012
基金项目: 

中央高校基本科研业务费专项资金资助 20ZYJS016

详细信息
    通讯作者:

    孙晓霞, E-mail: sunxxciir@163.com

  • 中图分类号: TG146.411

Analysis on X-ray flaw detection stripe of tungsten infiltrated copper used in gas rudder

More Information
  • 摘要: 以燃气舵用钨渗铜(W-7Cu)为研究对象,通过观察和检测X射线探伤底片、金相组织、断口显微形貌及力学性能,对产品在X射线探伤过程中出现的条纹现象进行分析。结果表明,燃气舵用钨渗铜X射线探伤出现的条纹现象由材料的组织结构和工艺特点所决定,条纹区域的组织属于钨渗铜材料的正常组织,不存在孔洞、裂纹和渗铜不均等结构缺陷;产品条纹区域的性能指标满足技术要求,与材料无条纹区域的性能无显著差别;提出了对燃气舵用钨渗铜X射线探伤进行分级的建议。
  • 图  1  燃气舵系统示意图[1]

    Figure  1.  Schematic diagram of the gas rudder system[1]

    图  2  燃气舵用钨渗铜产品射线探伤图

    Figure  2.  X-ray flaw detection diagram of the tungsten infiltrated copper products used in gas rudder

    图  3  燃气舵用钨渗铜产品的探伤位置示意图

    Figure  3.  Schematic diagram of the flaw detection position for the tungsten infiltrated copper products used in gas rudder

    图  4  燃气舵用钨渗铜产品取样位置示意图

    Figure  4.  Schematic diagram of sampling position for the tungsten infiltrated copper products used in gas rudder

    图  5  钨渗铜产品不同区域金相组织:(a)A位置;(b)B位置;(c)C位置

    Figure  5.  Metallographic structure of the tungsten infiltrated copper products in the different regions: (a) position A; (b)position B; (c) position C

    图  6  钨渗铜产品不同区域显微组织形貌:(a)A位置;(b)C位置

    Figure  6.  Microstructure of the tungsten infiltrated copper products in the different regions: (a) position A; (b) position C

    图  7  钨渗铜产品不同区域800℃拉伸曲线:(a)D位置;(b)C位置

    Figure  7.  Tensile curves of the tungsten infiltrated copper products in the different regions: (a) position D; (b) position C

    图  8  钨渗铜产品不同区域800℃拉伸断口形貌:(a)D位置;(b)C位置

    Figure  8.  Tensile fracture of the tungsten infiltrated copper products in the different regions: (a) position D; (b) position C

    表  1  钨渗铜产品性能参数

    Table  1.   Product performance parameters of the tungsten infiltrated copper materials

    Cu质量分数/%钨骨架相对密度/%钨渗铜材料密度/(g·cm-3)钨渗铜材料相对密度/%
    9.081.317.398.6
    下载: 导出CSV

    表  2  钨渗铜产品不同区域密度测量值

    Table  2.   Density data of the tungsten infiltrated copper products in the different regions

    试样编号区域密度/(g·cm-3)
    1#A17.36
    2#B17.33
    3#C17.27
    下载: 导出CSV

    表  3  钨渗铜产品不同区域能谱分析结果

    Table  3.   EDS analysis results of the tungsten infiltrated copper products in the different regions

    位置Cu质量分数/%W质量分数/%
    有条纹区〔A位置)6.1493.86
    无条纹区〔C位置)9.1590.85
    下载: 导出CSV

    表  4  钨渗铜产品不同区域力学性能试验结果

    Table  4.   Mechanical properties of the tungsten infiltrated copper products in the different regions

    区域试样编号室温抗拉强度/MPa800 ℃抗拉强度/MPa
    实际值平均值实际值平均值
    无条纹区(C位置)C-1730290
    C-2720728290290
    C-3734290
    有条纹区(D位置)D-1720285
    D-2729726280283
    D-3730285
    下载: 导出CSV
  • [1] Ye B. Parametric Design and Software Development of Gas Vane[Dissertation]. Nanjing: Nanjing University of Science and Technology, 2008

    叶彬. 燃气舵片参数化设计及其软件开发[学位论文]. 南京: 南京理工大学, 2008
    [2] Yuan S Q, Zhang B Y, Chen Z M, et al. Current status and development of tungsten alloys using in warheads. China Tungsten Ind, 2015, 30(2): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201502012.htm

    袁书强, 张保玉, 陈子明, 等. 战斗部用钨合金材料现状及发展状况. 中国钨业, 2015, 30(2): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201502012.htm
    [3] Fan J L, Li P F, Liu T, et al. Advances in fine grained tungsten and tungsten alloys with high performance. China Tungsten Ind, 2015, 30(2): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201502011.htm

    范景莲, 李鹏飞, 刘涛, 等. 高性能细晶钨及钨合金的研究进展. 中国钨业, 2015, 30(2): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201502011.htm
    [4] Zhong J F. Development and application on gas rudder prepared by copper tungsten. Aerosp Manuf Technol, 1987(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HTGY198705000.htm

    钟景福. 钨渗铜燃气舵的研制和应用. 航天工艺, 1987(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HTGY198705000.htm
    [5] Ma H Q, Gan Y, Zhang W, et al. Radiographic inspection of common defects in superalloy blades. Fail Anal Prev, 2020, 15(3): 159 https://www.cnki.com.cn/Article/CJFDTOTAL-SXFX202003006.htm

    马海全, 甘勇, 张卫, 等. 高温合金叶片常见缺陷的射线检测. 失效分析与预防, 2020, 15(3): 159 https://www.cnki.com.cn/Article/CJFDTOTAL-SXFX202003006.htm
    [6] Dan X G, Fan Z K, Liang S H, et al. Investigation on the ultrasonic nondestructive test of infiltrated W-Cu alloy by multiple echo method. Powder Metall Technol, 2005, 23(3): 181 doi: 10.3321/j.issn:1001-3784.2005.03.005

    淡新国, 范志康, 梁淑华, 等. 熔渗CuW材料的超声无损探伤研究. 粉末冶金技术, 2005, 23(3): 181 doi: 10.3321/j.issn:1001-3784.2005.03.005
    [7] Wang Z Y, Li J W, Tang G P, et al. The test block design to tungsten alloy bars. Nondestr Test, 2015, 37(7): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201507003.htm

    王增勇, 李建文, 汤光平, 等. 超声检测用钨合金棒材试块设计. 无损检测, 2015, 37(7): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201507003.htm
    [8] Chen W G, An F S. Anaylsis of ultrasonic nondestructive investigation of W-Cu powder metallurgical products. Electr Eng Mater, 2006(1): 14 doi: 10.3969/j.issn.1671-8887.2006.01.004

    陈文革, 安发顺. 钨铜合金的超声波无损检测分析. 电工材料, 2006(1): 14 doi: 10.3969/j.issn.1671-8887.2006.01.004
    [9] Kang D, Zhang H, Ma Z G, et al. Water-immersion ultrasonic testing of copper infiltrated tungsten material used in aerospace. Aerosp Manuf Technol, 2018, 12(6): 22 doi: 10.3969/j.issn.1674-5108.2018.06.005

    康达, 张宏, 马兆光, 等. 航天用钨渗铜产品水浸超声检测研究. 航天制造技术, 2018, 12(6): 22 doi: 10.3969/j.issn.1674-5108.2018.06.005
    [10] Xie D H, He W Y, Wang X L, et al. Ultrasonic testing and defect analysis of tungsten alloy shells. Nondestr Test, 2006, 28(12): 641 doi: 10.3969/j.issn.1000-6656.2006.12.008

    谢东华, 何文艳, 王秀龙, 等. 钨合金壳体的超声检测及缺陷分析. 无损检测, 2006, 28(12): 641 doi: 10.3969/j.issn.1000-6656.2006.12.008
    [11] Xiao J, Yang X G, Lin X S. Materials and process techniques of copper infiltrated tungsten for thrust vector jet vane of airborne missile. Aero Weap, 2009(6): 61 doi: 10.3969/j.issn.1673-5048.2009.06.015

    肖军, 杨晓光, 林学书. 空空导弹推矢燃气舵用钨渗铜材料与工艺. 航空兵器, 2009(6): 61 doi: 10.3969/j.issn.1673-5048.2009.06.015
    [12] Sun B S. Study on the properties of copper tungsten infiltrated material. J Solid Rocket Technol, 1990(1): 82 https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ199001017.htm

    孙百顺. 钨渗铜材料性能的研究. 固体火箭技术, 1990(1): 82 https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ199001017.htm
    [13] Lin J Q, Chen W G, Tao W J, et al. Research on the tungsten fiber reinforced W/Cu composite materials with high-copper content. Powder Metall Technol, 2012, 30(2): 125 doi: 10.3969/j.issn.1001-3784.2012.02.008

    李君强, 陈文革, 陶文俊, 等. W纤维增强高Cu含量W-Cu复合材料的研究. 粉末冶金技术, 2012, 30(2): 125 doi: 10.3969/j.issn.1001-3784.2012.02.008
    [14] Gao H M, Chen W G, Lian K, et al. Relativity between grain size and tungsten copper alloy. Chin J Rare Met, 2018, 42(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201801009.htm

    高红梅, 陈文革, 连凯, 等. 晶粒尺寸与钨铜合金相关性的研究. 稀有金属, 2018, 42(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201801009.htm
    [15] Cui L Q, Han S L, Li D R, et al. The effects of W particle size on the structure and mechanical properties of tungsten-copper alloy strips prepared by warm powder rolling. Powder Metall Ind, 2019, 29(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201906001.htm

    崔利群, 韩胜利, 李达人, 等. W粉粒度对粉末温轧制备钨铜合金板组织和性能的影响. 粉末冶金工业, 2019, 29(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201906001.htm
    [16] Zhang B H, Zhang D H, Guo Y L. Study on ablation properties and mechanism of tungsten infiltrated copper composites. Powder Metall Ind, 2019, 29(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201906005.htm

    张保红, 张丹华, 郭颖利. 钨渗铜复合材料烧蚀性能及机理研究. 粉末冶金工业, 2019, 29(6): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201906005.htm
    [17] Chen W, Zhou W P, Kuang Y G, et al. Effect of granularity on W-skeleton of copper infiltrated tungsten. Powder Metall Ind, 2004, 14(2): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200402007.htm

    陈伟, 周武平, 邝用庚, 等. 粉末粒度对于高温钨渗铜材料骨架性能的影响. 粉末冶金工业, 2004, 14(2): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200402007.htm
    [18] Cun M M, Chen W G, Yan G J, et al. Influence of multiple sintering on microstructure and properties of W-Cu alloy. Powder Metall Technol, 2017, 35(4): 243

    寸敏敏, 陈文革, 颜国君, 等. 多次烧结对钨铜合金组织与性能的影响. 粉末冶金技术, 2017, 35(4): 243) Yang G Y, Liu N, Jia L, et al. Fabrication and compression property of tungsten skeleton for tungsten-copper composite. Mater Sci Eng Powder Metall, 2017, 22(5): 701(杨广宇, 刘楠, 贾亮, 等. 钨铜复合材料用钨骨架的制备与压缩性能. 粉末冶金材料科学与工程, 2017, 22(5): 701
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  73
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 刊出日期:  2020-12-27

目录

    /

    返回文章
    返回