热等静压UNS S32750超级双相不锈钢的组织和性能

尚峰 王智勇 乔斌 贺毅强 李化强

尚峰, 王智勇, 乔斌, 贺毅强, 李化强. 热等静压UNS S32750超级双相不锈钢的组织和性能[J]. 粉末冶金技术, 2022, 40(6): 483-487. doi: 10.19591/j.cnki.cn11-1974/tf.2020060013
引用本文: 尚峰, 王智勇, 乔斌, 贺毅强, 李化强. 热等静压UNS S32750超级双相不锈钢的组织和性能[J]. 粉末冶金技术, 2022, 40(6): 483-487. doi: 10.19591/j.cnki.cn11-1974/tf.2020060013
SHANG Feng, WANG Zhi-yong, QIAO Bin, HE Yi-qiang, LI Hua-qiang. Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing[J]. Powder Metallurgy Technology, 2022, 40(6): 483-487. doi: 10.19591/j.cnki.cn11-1974/tf.2020060013
Citation: SHANG Feng, WANG Zhi-yong, QIAO Bin, HE Yi-qiang, LI Hua-qiang. Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing[J]. Powder Metallurgy Technology, 2022, 40(6): 483-487. doi: 10.19591/j.cnki.cn11-1974/tf.2020060013

热等静压UNS S32750超级双相不锈钢的组织和性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020060013
基金项目: 江苏省高校“青蓝工程”中青年学术带头人资助项目;江苏省“六大人才高峰”高层次人才资助项目;江苏省“333”人才工程资助项目;江苏省产学研前瞻性联合研究项目(BY2018210);淮海工学院自然科学基金(Z2017001);连云港市521人才工程项目(ZKK201805);连云港市海燕计划(2018-QD-013)
详细信息
    通讯作者:

    E-mail: shangfeng@jou.edu.cn

  • 中图分类号: TG142.1

Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing

More Information
  • 摘要: 采用等离子旋转电极雾化-热等静压工艺制备了UNS S32750超级双相不锈钢。利用光学显微镜、扫描电子显微镜、电子背散射衍射、万能试验机等手段研究了热等静压UNS S32750超级双相不锈钢固溶处理前后的显微组织和力学性能。结果表明:采用等离子旋转电极雾化制备的UNS S32750超级双相不锈钢粉末在150 MPa 压力下,经1200 ℃×3 h热等静压烧结后实现了致密化,相对密度为99.7%。随炉缓冷过程中,烧结件中析出的σ相导致材料韧性显著下降。经1035 ℃×1 h固溶处理后水淬,σ相完全溶解,材料韧性显著提高,显微组织为α和γ两相组织,体积比为65:35,抗拉强度791 MPa,屈服强度586 MPa,断后伸长率38%,冲击吸收功236 J。
  • 图  1  等离子旋转电极雾化粉末形貌

    Figure  1.  Morphology of the plasma rotating electrode atomized powder

    图  2  JMatPro模拟的UNS S32750双相不锈钢相图

    Figure  2.  Phase diagram of the UNS S32750 duplex stainless steels simulated by JMatPro software

    图  3  不同固溶处理试样金相组织:(a)S1;(b)S2;(c)S3;(d)S4;(e)S5

    Figure  3.  Microstructure of the specimens after the different solution treatments: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5

    图  4  S1试样电子背散射衍射组织

    Figure  4.  Electron back scattering diffraction images of the S1 sample

    图  5  不同固溶处理工艺试样拉伸断口形貌:(a)S1;(b)S3

    Figure  5.  Tensile fracture morphology of the specimens after the different solution treatments: (a) S1; (b) S3

    图  6  不同固溶处理工艺试样冲击断口形貌:(a)S1;(b)S3

    Figure  6.  Impact fracture morphology of the specimens after the different solution treatments: (a) S1; (b) S3

    表  1  UNS S32750双相不锈钢粉末化学成分(质量分数)

    Table  1.   Chemical composition of the UNS S32750 duplex stainless steel powders %

    Cr Ni Mo N Si Mn S P C O Fe
    25.7100 6.0800 3.5600 0.2000 0.4500 0.7200 0.0040 0.0300 0.0280 0.0057 余量
    下载: 导出CSV

    表  2  UNS S32750双相不锈钢热处理工艺

    Table  2.   Heat treatment of the UNS S32750 super-duplex stainless steels

    试样编号 加工工艺
    S1 热等静压(1200 ℃ × 3 h、150 MPa)+ 炉冷
    S2 热等静压(1200 ℃ × 3 h、150 MPa)+ 炉冷 + 固溶处理(1000 ℃ × 1 h)+ 水冷
    S3 热等静压(1200 ℃ × 3 h、150 MPa)+ 炉冷 + 固溶处理(1035 ℃ × 1 h)+ 水冷
    S4 热等静压(1200 ℃ × 3 h、150 MPa)+ 炉冷 + 固溶处理(1070 ℃ × 1 h)+ 水冷
    S5 热等静压(1200 ℃ × 3 h、150 MPa)+ 炉冷 + 固溶处理(1100 ℃ × 1 h)+ 水冷
    下载: 导出CSV

    表  3  不同固溶处理试样中α和γ两相体积比

    Table  3.   Volume ratio of α and γ phases in the specimens after the different solution treatments

    试样编号 α与γ体积比
    S1 52:44
    S3 65:35
    S4 65:35
    S5 71:29
    下载: 导出CSV

    表  4  不同加工工艺试样的力学性能

    Table  4.   Mechanical properties of the specimens treated by the different processing technologies

    试样编号 抗拉强度 / MPa 屈服强度 / MPa 断后伸长率 / % 冲击吸收功 / J 硬度,HV
    S1 830 572 36 8 231
    S3 791 586 38 236 188
    铸态[17] 790 530 36 155
    下载: 导出CSV
  • [1] Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integrity, 2016, 2: 1755 doi: 10.1016/j.prostr.2016.06.221
    [2] Jia C C, Kuang C J. Development of powder metallurgy high nitrogen stainless steels. Met World, 2015(1): 23 doi: 10.3969/j.issn.1000-6826.2015.01.08

    贾成厂, 况春江. 粉末冶金高氮不锈钢的发展历程. 金属世界, 2015(1): 23 doi: 10.3969/j.issn.1000-6826.2015.01.08
    [3] Zhang Z Q, Jing H Y, Xu L Y, et al. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel. Trans Mater Heat Treat, 2020, 41(5): 13

    张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展. 材料热处理学报, 2020, 41(5): 13
    [4] Xie X F, Li J W, Jiang W C, et al. Nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel 2205 multi-pass weld joints. Mater Sci Eng A, 2020, 786: 139426 doi: 10.1016/j.msea.2020.139426
    [5] Li H, Zhou E, Zhang D, et al. Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep, 2016, 6: 20190 doi: 10.1038/srep20190
    [6] Xiang H L, Liu C Y, Wang Y X, et al. Cavitation corrosion resistance of copper-bearing antibacterial duplex stainless steel. Spec Cast Nonferrous Alloys, 2018, 38(8): 816

    向红亮, 刘春育, 王永霞, 等. 含Cu抗菌双相不锈钢的空蚀行为研究. 特种铸造及有色合金, 2018, 38(8): 816
    [7] Qi M H, Ren S B, Zhang G Z, et al. Effects of solution treatment on microstructure and mechanical properties of hot isostatic pressing SAF3207. Powder Metall Technol, 2017, 35(5): 328

    齐美欢, 任淑彬, 张公桢, 等. 固溶处理对热等静压SAF3207的组织与性能影响. 粉末冶金技术, 2017, 35(5): 328
    [8] Pan M M, Zhang X M, Chen P, et al. The effect of chemical composition and annealing condition on the microstructure and tensile properties of a resource-saving duplex stainless steel. Mater Sci Eng A, 2020, 788: 139540 doi: 10.1016/j.msea.2020.139540
    [9] Holländer Pettersson N, Lindell D, Lindberg F, et al. Formation of chromium nitride and intragranular austenite in a super duplex stainless steel. Metall Mater Trans A, 2019, 50: 5594 doi: 10.1007/s11661-019-05489-2
    [10] Li J Y, Yang Z H. Thermo-plasticity and high-temperature microstructure evolution of hyper duplex stainless steel 00Cr32Ni7Mo3.5N. Forg Stamp Technol, 2013, 38(6): 122

    李静媛, 杨智辉. 超级双相不锈钢00Cr32Ni7Mo3.5N的热塑性及高温组织演变. 锻压技术, 2013, 38(6): 122
    [11] He F S, Xiang H L, Gu X, et al. Cavitation erosion behavior of Cr32Ni7Mo3N hyper duplex stainless steel. Chin J Eng, 2014, 36(8): 1060

    何福善, 向红亮, 顾兴, 等. Cr32Ni7Mo3N特级双相不锈钢的空蚀行为. 工程科学学报, 2014, 36(8): 1060
    [12] Davidson K P, Singamneni S. Magnetic characterization of selective laser-melted S32750 duplex stainless steel. JOM, 2017, 69(3): 569 doi: 10.1007/s11837-016-2193-6
    [13] Davidson K P, Singamneni S. Selective laser melting of duplex stainless steel powders: An investigation. Mater Manuf Process, 2016, 31(12): 1543 doi: 10.1080/10426914.2015.1090605
    [14] Sotomayor M E, Cervera A, Várez A, et al. Duplex stainless steel self-ligating orthodontic brackets by micro-powder injection moulding. Int J Eng Res Sci, 2016, 2(4): 184
    [15] Zucato I, Moreira M, Machado I, et al. Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850 ℃. Mater Res, 2002, 5(3): 385 doi: 10.1590/S1516-14392002000300026
    [16] Wang X F. Research on Microstructures and Properties of 00Cr25Ni7Mo4N Super Duplex Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2009

    王晓峰. 00Cr25Ni7Mo4N超级双相不锈钢组织及性能的研究[学位论文]. 北京: 北京科技大学, 2009
    [17] Li S J. The Effect of Content on Microstructure and Mechanical Properties of 00Cr25Ni7Mo3N Super Duplex Stainless Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2011

    李树健. 成分对00Cr25Ni7Mo3N双相不锈钢组织及性能的影响[学位论文]. 昆明: 昆明理工大学, 2011
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  82
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回