放电等离子烧结B4C研究进展

闫星亨 周新贵 王洪磊

闫星亨, 周新贵, 王洪磊. 放电等离子烧结B4C研究进展[J]. 粉末冶金技术, 2022, 40(6): 516-526. doi: 10.19591/j.cnki.cn11-1974/tf.2020070001
引用本文: 闫星亨, 周新贵, 王洪磊. 放电等离子烧结B4C研究进展[J]. 粉末冶金技术, 2022, 40(6): 516-526. doi: 10.19591/j.cnki.cn11-1974/tf.2020070001
YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. doi: 10.19591/j.cnki.cn11-1974/tf.2020070001
Citation: YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. doi: 10.19591/j.cnki.cn11-1974/tf.2020070001

放电等离子烧结B4C研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020070001
详细信息
    通讯作者:

    E-mail: zhouxinguilmy@163.com

  • 中图分类号: TB333

Research progress of B4C prepared by spark plasma sintering

More Information
  • 摘要: B4C是一种重要的工业材料,被广泛应用于零件加工、航空航天、装甲防护和核工业领域。放电等离子烧结是一种通过多场耦合作用来实现材料低温快速烧结的技术。本文综述了近几年来放电等离子烧结制备B4C陶瓷的研究现状,阐述了放电等离子烧结的基本原理和特点,着重分析了不同原料粉末和不同烧结工艺参数对B4C结构和性能的影响,最后对放电等离子烧结B4C陶瓷的发展做出了展望。
  • 图  1  ZrO2(a)和TiN(b)试样内部温度分布(1500 ℃保温)[14]

    Figure  1.  Temperature distributions inside the ZrO2 (a) and TiN (b) samples at 1500 ℃[14]

    图  2  氮气气氛下放电等离子烧结样品晶界显微形貌[21]:(a)扫描透射电子显微形貌;(b)能量过滤成像形貌

    Figure  2.  Grain boundaries in the diluted samples pepared by SPS in the N2-gas atmosphere[21]: (a) scanning transmission electron microscopy images; (b) energy filtered transmission electron microscopy images

    图  3  相似放电等离子烧结条件下不同混合方式混合B+C粉末获得的B4C陶瓷典型微观结构[22]:(a)、(d)常规混合;(b)、(e)高能球磨,5 min;(c)、(f)高能球磨,15 min

    Figure  3.  Typical microstructure of the B4C ceramics obtained from the B+C powders in different mixing methods under the similar SPS conditions[22]: (a), (d) conventional mixing; (b), (e) high energy ball milling (HEBM), 5 min; (c), (f) HEBM, 15 min

    图  4  1700 ℃放电等离子烧结B4C‒SiC复合材料中裂纹扩展显微形貌[28]

    Figure  4.  Microstructure of the crack propagation in the B4C‒SiC composites prepared by SPS at 1700 ℃[28]

    图  5  碳化硼样品压痕形貌[31]:(a)含Si碳化硼;(b)纯碳化硼

    Figure  5.  Typical indent morphologies of boron carbide[31]: (a) B4C with Si; (b) B4C without Si

    图  6  单体B4C陶瓷和B4C复合材料磨损曲线(a)和同一尺度下残余磨损痕迹的光学形貌(b)[35]

    Figure  6.  Wear curves (a) and the optical images of the residual wear scar at the same scale (b) for the monolithic B4C ceramic and B4C composites[35]

    图  7  TiB2摩尔分数对B4C‒TiB2复合材料硬度和韧性(a)及晶粒尺寸(b)的影响[37]

    Figure  7.  Effect of the TiB2 mole fraction on the hardness, toughness (a), and grain size (b) of the B4C‒TiB2 composites[37]

    图  8  SiC质量分数对B4C‒TiB2‒SiC复合材料力学性能的影响[38]:(a)相对密度和弯曲强度;(b)硬度和断裂韧性

    Figure  8.  Effect of the SiC mass fraction on the mechanical properties of the B4C‒TiB2‒SiC composites[38]: (a) relative density and bending strength; (b) hardness and fracture toughness

    图  9  纯B4C(a)和B4C/h-BN(添加体积分数2%c-BN)(b)蚀刻表面显微形貌[39]

    Figure  9.  Microstructure of the etched surfaces for the pure B4C (a) and B4C/h-BN (addingc-BN with the volume fraction of 2%) (b)[39]

    图  10  B4C‒SiC复合材料相对密度随SiC体积分数、Y2O3质量分数和烧结温度的变化[40]

    Figure  10.  Effect of SiC volume fraction, Y2O3 mass fraction, and sintering temperature on the relative density of the spark plasma sintered B4C‒SiC composites[40]

    图  11  放电等离子烧结过程中B/C原子比的变化(a)和烧结试样相对密度与B/C原子比的关系(b)[41]

    Figure  11.  Altering B/C by atom during SPS processing(a) and the relative density of the sintered specimens as a function of B/C by atom (b)[41]

    图  12  Al2O3质量分数对放电等离子烧结B4C陶瓷力学性能的影响[42]:(a)相对密度;(b)硬度和断裂韧性

    Figure  12.  Effect of Al2O3 mass fraction on the mechanical properties of the B4C ceramics by SPS[42]: (a) relative density; (b) hardness and fracture toughness

    图  13  质量分数5%(Ti3SiC2+Si)‒B4C陶瓷透射电子显微形貌及对应I、II、III晶粒能谱分析[44]

    Figure  13.  TEM images of the 5%(Ti3SiC2+Si)‒B4C ceramics by mass and the energy spectrum analysis of the corresponding grains I, II, and III[44]

    图  14  (TiB2+SiC)质量分数对放电等离子烧结B4C陶瓷力学性能的影响[45]:(a)相对密度、硬度和密度;(b)弯曲强度和断裂韧性

    Figure  14.  Effect of (TiB2+SiC) mass fraction on the mechanical properties of the B4C ceramics by SPS[45]: (a) relative density, hardness, and density; (b) flexural strength and fracture toughness

    表  1  不同放电等离子烧结工艺下样品的相对密度、维氏硬度、断裂韧性及动态韧性[20]

    Table  1.   Relative density, Vickers hardness, fracture toughness, and dynamic toughness of the samples prepared by the different SPS processes[20]

    样品 放电等离子烧结工艺 相对密度 / % 硬度 / GPa 断裂韧性 / (MPa·m1/2) 动态韧性 / (MJ·m‒2)
    A 1600 ℃/20 min/300 MPa 95.6 27.6±1.8 6.6±0.7 19.3
    B 2100 ℃/10 min/50 MPa 97.8 35.3±2.6 3.8±0.4 5.1
    下载: 导出CSV

    表  2  1750 ℃放电等离子烧结B4C‒SiC复合材料相对密度和硬度[40]

    Table  2.   Relative density and hardness of the spark plasma sintered B4C‒SiC composites at 1750 ℃[40]

    试样 相对密度 / % 硬度 / GPa
    B4C+5%SiC(反应烧结) 97.7 35.0±0.7
    B4C+10%SiC(反应烧结) 93.8 34.5±0.7
    B4C+15%SiC(反应烧结) 91.2 33.1±0.7
    B4C+20%SiC(反应烧结) 88.3 32.1±0.7
    B4C+5%SiC 98.0 34.4±0.5
    B4C+10%SiC 98.0 33.4±0.3
    B4C+15%SiC 97.8 31.1±0.5
    B4C+5%SiC+5%Y2O3 98.3 35.3±0.4
    B4C+10%SiC+5%Y2O3 98.8 34.4±0.4
    B4C+15%SiC+5%Y2O3 98.2 33.0±0.6
    下载: 导出CSV
  • [1] Suri A K, Subramanian C, Sonber J K, et al. Synthesis and consolidation of boron carbide: a review. Int Mater Rev, 2013, 55(1): 4
    [2] Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A, 2000, 287(2): 276 doi: 10.1016/S0921-5093(00)00786-3
    [3] Ghosh S, Chokshi A H, Lee P, et al. A huge effect of weak DC electrical fields on grain growth in zirconia. J Am Ceram Soc, 2009, 92(8): 1856 doi: 10.1111/j.1551-2916.2009.03102.x
    [4] Gao H, Asel T J, Cox J W, et al. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy. J Appl Phys, 2016, 120(10): 1342
    [5] Mclaren C, Heffner W, Tessarollo R, et al. Electric field-induced softening of alkali silicate glasses. Appl Phys Lett, 2015, 107(18): 184101 doi: 10.1063/1.4934945
    [6] Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr Mater, 2014, 81: 56 doi: 10.1016/j.scriptamat.2014.03.011
    [7] Langer J, Hoffmann M J, Guillon O. Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: A comparative study. Int J Appl Ceram Technol, 2011, 94(8): 2344
    [8] Langer J, Hoffmann M J, Guillon O. Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater, 2009, 57(18): 5454 doi: 10.1016/j.actamat.2009.07.043
    [9] Langer J, Hoffmann M J, Guillon O. Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia. J Am Ceram Soc, 2011, 94(1): 24 doi: 10.1111/j.1551-2916.2010.04016.x
    [10] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2
    [11] Stanciu L A, Kodash V Y, Groza J R. Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A, 2001, 32(10): 2633 doi: 10.1007/s11661-001-0053-6
    [12] Anselmi-Tamburini U, Garay J E, Munir Z A, et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J Mater Res, 2004, 19(11): 3255 doi: 10.1557/JMR.2004.0423
    [13] Chen D J, Mayo M J. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3. J Am Ceram Soc, 1996, 79(4): 906 doi: 10.1111/j.1151-2916.1996.tb08524.x
    [14] Vanmeensel K, Laptev A, Hennicke J, et al. Modelling of the temperature distribution during field assisted sintering. Acta Mater, 2005, 53(16): 4379 doi: 10.1016/j.actamat.2005.05.042
    [15] Zhang M, Yuan T, Li R, et al. Densification mechanisms and microstructural evolution during spark plasma sintering of boron carbide powders. Ceram Int, 2018, 44(4): 3571 doi: 10.1016/j.ceramint.2017.11.061
    [16] Hayun S, Kalabukhov S, Ezersky V, et al. Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram Int, 2010, 36(2): 451 doi: 10.1016/j.ceramint.2009.09.004
    [17] Belon R, Antou G, Pradeilles N, et al. Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics. Ceram Int, 2017, 43(8): 6631 doi: 10.1016/j.ceramint.2017.02.053
    [18] Roumiguier L, Jankowiak A, Pradeilles N, et al. Mechanical properties of submicronic and nanometric boron carbides obtained by spark plasma sintering: Influence of B/C ratio and oxygen content. Ceram Int, 2019, 45(8): 9912 doi: 10.1016/j.ceramint.2019.02.033
    [19] Réjasse F, Georges M, Pradeilles N, et al. Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths. J Am Ceram Soc, 2018, 101(9): 3767 doi: 10.1111/jace.15707
    [20] Badica P, Grasso S, Borodianska H, et al. Tough and dense boron carbide obtained by high-pressure (300 MPa) and low-temperature (1600 ℃) spark plasma sintering. J Ceram Soc Jpn, 2014, 122(1424): 271 doi: 10.2109/jcersj2.122.271
    [21] Vasylkiv O, Borodianska H, Badica P, et al. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. J Nanosci Nanotechnol, 2012, 12(2): 959 doi: 10.1166/jnn.2012.5875
    [22] Alexander R, Murthy T S R C, Vasanthakumar K, et al. In-situ synthesis and densification of boron carbide and boron carbide-graphene nanoplatelet composite by reactive spark plasma sintering. Ceram Int, 2018, 44(17): 21132 doi: 10.1016/j.ceramint.2018.08.154
    [23] Moskovskikh D O, Paramonov K A, Nepapushev A A, et al. Bulk boron carbide nanostructured ceramics by reactive spark plasma sintering. Ceram Int, 2017, 43(11): 8190 doi: 10.1016/j.ceramint.2017.03.145
    [24] Moshtaghioun B M, García D G, Domínguez-Rodríguez A. High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C–SiC with/without graphite (g). J Eur Ceram Soc, 2016, 36(5): 1127 doi: 10.1016/j.jeurceramsoc.2015.12.016
    [25] Wakai F. Step model of solution-precipitation creep. Acta Metall Mater, 1994, 42(4): 1163 doi: 10.1016/0956-7151(94)90133-3
    [26] Chen M, Yin Z, Yuan J, et al. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceram Int, 2018, 44(13): 15370 doi: 10.1016/j.ceramint.2018.05.188
    [27] Hu L, Wang W, He Q, et al. Preparation and characterization of reduced graphene oxide-reinforced boron carbide ceramics by self-assembly polymerization and spark plasma sintering. J Eur Ceram Soc, 2020, 40(3): 612 doi: 10.1016/j.jeurceramsoc.2019.10.036
    [28] Moshtaghioun B M, Ortiz A L, Gómez-García D, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. J Eur Ceram Soc, 2013, 33(8): 1395 doi: 10.1016/j.jeurceramsoc.2013.01.018
    [29] Ye F, Hou Z, Zhang H, et al. Densification and mechanical properties of spark plasma sintered B4C with Si as a sintering aid. J Am Ceram Soc, 2010, 93(10): 2956 doi: 10.1111/j.1551-2916.2010.03931.x
    [30] Rehman S S, Ji W, Khan S A, et al. Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid. Ceram Int, 2015, 41(1): 1903 doi: 10.1016/j.ceramint.2014.09.115
    [31] Ma L, Xie K Y, Toksoy M F, et al. The effect of Si on the microstructure and mechanical properties of spark plasma sintered boron carbide. Mater Charact, 2017, 134: 274 doi: 10.1016/j.matchar.2017.11.010
    [32] Rehman S S, Ji W, Khan S A, et al. Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering. J Eur Ceram Soc, 2014, 34(10): 2169 doi: 10.1016/j.jeurceramsoc.2014.02.014
    [33] Zhang M, Li R, Yuan T, et al. Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scr Mater, 2019, 163: 34 doi: 10.1016/j.scriptamat.2018.12.036
    [34] Ji W, Todd R I, Wang W, et al. Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti‒Al intermetallics as sintering aid. J Eur Ceram Soc, 2016, 36(10): 2419 doi: 10.1016/j.jeurceramsoc.2016.03.028
    [35] Ortiz A L, Galán C A, Borrero-López O, et al. Highly sliding-wear resistant B4C composites fabricated by spark-plasma sintering with Ti–Al additives. Scr Mater, 2020, 177: 91 doi: 10.1016/j.scriptamat.2019.10.014
    [36] Buyuk B, Tugrul A B, Cengiz M, et al. Radiation shielding properties of spark plasma sintered boron carbide-aluminium composites. Acta Phys Pol A, 2015, 128(2B): B
    [37] Liu Y, Li Z, Peng Y, et al. Effect of sintering temperature and TiB2 content on the grain size of B4C‒TiB2 composites. Mater Today Commun, 2020, 23(1): 100875
    [38] Liu Y, Wu X, Liu M, et al. Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering. Cerami Int, 2020, 46(3): 3793 doi: 10.1016/j.ceramint.2019.10.102
    [39] Sun J, Niu B, Ren L, et al. Densification and mechanical properties of boron carbide prepared via spark plasma sintering with cubic boron nitride as an additive. J Eur Ceram Soc, 2020, 40(4): 1103 doi: 10.1016/j.jeurceramsoc.2019.12.047
    [40] Sahin F C, Apak B, Akin I, et al. Spark plasma sintering of B4C–SiC composites. Solid State Sci, 2012, 14(11-12): 1660 doi: 10.1016/j.solidstatesciences.2012.05.037
    [41] Firshtman N, Kalabukhov S, Frage N. Effect of boron carbide composition on its densification behavior during spark plasma sintering (SPS). Ceram Int, 2018, 44(17): 21842 doi: 10.1016/j.ceramint.2018.08.291
    [42] Zhang F, Fu Z Y, Zhang J Y, et al. Fast densification of B4C ceramics with Al2O3 as a sintering aid by spark plasma sintering. Mater Sci Forum, 2009, 620-622: 395 doi: 10.4028/www.scientific.net/MSF.620-622.395
    [43] Xie K Y, Toksoy M F, Kuwelkar K, et al. Effect of alumina on the structure and mechanical properties of spark plasma sintered boron carbide. J Am Ceram Soc, 2014, 97(11): 3710 doi: 10.1111/jace.13178
    [44] Song Q, Zhang Z H, Hua Z Y, et al. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceram Int, 2019, 45(7): 8790 doi: 10.1016/j.ceramint.2019.01.204
    [45] Yin S P, Zhang Z H, Cheng X W, et al. Spark plasma sintering of B4C‒TiB2‒SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceram Int, 2018, 44(17): 21626 doi: 10.1016/j.ceramint.2018.08.245
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  227
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回