粉末烧结对Mg‒Sc合金微观组织和力学性能的影响

韩国强 王玮玮 李晓艳

韩国强, 王玮玮, 李晓艳. 粉末烧结对Mg‒Sc合金微观组织和力学性能的影响[J]. 粉末冶金技术, 2023, 41(6): 548-553. doi: 10.19591/j.cnki.cn11-1974/tf.2020070005
引用本文: 韩国强, 王玮玮, 李晓艳. 粉末烧结对Mg‒Sc合金微观组织和力学性能的影响[J]. 粉末冶金技术, 2023, 41(6): 548-553. doi: 10.19591/j.cnki.cn11-1974/tf.2020070005
HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. doi: 10.19591/j.cnki.cn11-1974/tf.2020070005
Citation: HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. doi: 10.19591/j.cnki.cn11-1974/tf.2020070005

粉末烧结对Mg‒Sc合金微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020070005
基金项目: 中国博士后科学基金资助项目(2019M650972,2019M650973,2017M621034)
详细信息
    通讯作者:

    E-mail: wangweiwei@enfi.com.cn

  • 中图分类号: TG146.22; TF125

Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys

More Information
  • 摘要: 在惰性气氛下,经500 ℃烧结2 h和300 ℃挤压制得镁钪合金,并对其进行微观组织观察和力学性能测试。结果表明:粉末烧结镁钪合金的相组成主要为基体Mg相,未发现Mg‒Sc相生成。在粉末烧结过程中,钪元素在镁基体中发生扩散,明显改善界面结合形式,提高了镁钪界面的结合性。当钪质量分数为1.0%时,镁钪合金的伸长率达到10.37%,提高了61%。在拉伸试样断口处发现大量韧窝存在,说明烧结处理可明显提高镁钪合金的韧性。
  • 图  1  烧结和未烧结镁钪合金X射线图谱

    Figure  1.  XRD patterns of the sintered and un-sintered Mg‒Sc alloys

    图  2  Mg‒Sc合金显微形貌:(a)低倍,未烧结;(b)低倍,烧结;(c)高倍,未烧结;(d)高倍,烧结

    Figure  2.  SEM images of the Mg‒Sc alloys: (a) low magnification, un-sintered; (b) low magnification, sintered; (c) high magnification, un-sintered; (d) high magnification, sintered

    图  3  Mg‒Sc合金能谱分析:(a)A区;(b)B区;(c)C区;(d)D区

    Figure  3.  Energy spectrum analysis of the Mg‒Sc alloys: (a) region A; (b) region B; (c) region C; (d) region D

    图  4  Mg‒Sc合金显微形貌(a)及线扫描分析(b)

    Figure  4.  SEM image (a) and line scan analysis (b) of the Mg‒Sc alloys

    图  5  未烧结和烧结Mg‒Sc合金拉伸应力‒应变曲线

    Figure  5.  Ttensile stress‒strain curves of the un-sintered and sintered Mg‒Sc alloys

    图  6  Mg‒Sc合金拉伸试样断口形貌照片:(a)低倍;(b)局部放大

    Figure  6.  Fracture morphologies of the Mg‒Sc alloy tensile specimens: (a) low magnification; (b) local magnified view

    图  7  Mg‒Sc合金断裂机制示意图:(a)原始模型;(b)局部放大模型;(c)受力模型;(d)断裂模型

    Figure  7.  Schematic view of the fractured mechanism for the Mg‒Sc alloys: (a) original; (b) local magnified view; (c) under load; (d) fracture

    表  1  实验原料纯度及尺寸

    Table  1.   Purity and size of the raw materials in the experiment

    原材料纯度,质量分数 / %尺寸 / μm
    镁粉>99.920~60
    钪粉>99.95120~160
    下载: 导出CSV

    表  2  镁钪合金试样元素成分(质量分数)

    Table  2.   Element composition of the Mg‒Sc alloy samples %

    工艺Mg‒Sc合金ScMg
    未烧结Mg‒1.0%Sc0.98余量
    Mg‒2.0%Sc1.98余量
    烧结Mg‒1.0%Sc0.96余量
    Mg‒2.0%Sc2.01余量
    下载: 导出CSV
  • [1] Li W X. Magnesium and Magnesium Alloys. Changsha: Central South University Press, 2005

    黎文献. 镁及镁合金. 长沙: 中南大学出版社, 2005
    [2] Yu Y, Zhang W C, Duan X R. Study on microstructure and properties of thin tube of AZ31 magnesium alloy by extrusion technology. Powder Metall Technol, 2013, 31(3): 201

    于洋, 张文丛, 段祥瑞. AZ31镁合金细管静液挤压工艺及组织性能分析. 粉末冶金技术, 2013, 31(3): 201
    [3] Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnesium Alloys, 2020, 8(1): 1 doi: 10.1016/j.jma.2020.02.003
    [4] Liu D X, Yang D L, Li X L, et al. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg‒RE alloys: A review. J Mater Res Technol, 2019, 8(1): 1538 doi: 10.1016/j.jmrt.2018.08.003
    [5] Zhang J H, Liu S J, Wu R Z, et al. Recent developments in high-strength Mg‒RE-based alloys: Focusing on Mg‒Gd and Mg‒Y systems. J Magnesium Alloys, 2018, 6: 277 doi: 10.1016/j.jma.2018.08.001
    [6] Lü Z, Zhou J, Sun Z M, et al. Effect of rare earth elements on the structures and mechanical properties of magnesium alloys. Chin Sci Bull, 2013, 58: 816 doi: 10.1007/s11434-012-5617-x
    [7] Tan X H, Chee K H W, Chan K W J, et al. Effect of homogenization on enhancing the failure strain of high strength quaternary LPSO Mg‒Y‒Zn‒Al alloy. Mater Sci Eng A, 2015, 644: 405 doi: 10.1016/j.msea.2015.07.079
    [8] Li G L, Wen J B, He J G, et al. Effect of Nd addition on microstructure and corrosion resistance of AZ80 magnesium alloys. Trans Mater Heat Treat, 2013, 34(12): 53

    李高林, 文九巴, 贺俊光, 等. 稀土元素Nd对AZ80镁合金组织及耐蚀性能的影响. 材料热处理学报, 2013, 34(12): 53
    [9] Liu J H, Song Y W, Shan D Y, et al. Comparative study on corrosion behavior of cast and forged Mg‒5Y‒7Gd‒1Nd‒0.5Zr alloys. Acta Metall Sinica, 2018, 54(8): 1141

    刘金辉, 宋影伟, 单大勇, 等. 铸态和锻造态Mg‒5Y‒7Gd‒1Nd‒0.5Zr合金腐蚀行为对比研究. 金属学报, 2018, 54(8): 1141
    [10] Yang Y L, Liu C, Ma Y Z, et al. Effects of rare earth element Y on the microstructure and mechanical properties of 2A12 aluminum alloy prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(1): 3

    杨玉玲, 刘超, 马运柱, 等. 稀土元素Y对粉末冶金2A12铝合金组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 3
    [11] Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg‒5Zn‒xEr magnesium alloys. Acta Metall Sinica, 2019, 55(3): 389

    刘耀鸿, 王朝辉, 刘轲, 等. Er对Mg‒5Zn‒xEr镁合金热裂敏感性的影响. 金属学报, 2019, 55(3): 389
    [12] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J Mater Sci Technol, 2016, 32(12): 1211 doi: 10.1016/j.jmst.2016.07.001
    [13] Luo K, Zhang L, Wu G H, et al. Effect of Y and Gd content on the microstructure and mechanical properties of Mg‒Y‒RE alloys. J Magnesium Alloys, 2019, 7(2): 345 doi: 10.1016/j.jma.2019.03.002
    [14] Li S B, Li R J, Wang Z H, et al. Creep resistance of as-extruded Mg‒8Gd‒1Er‒0.5Zr alloy. Rare Met Mater Eng, 2019, 48(2): 545

    李淑波, 李瑞静, 王朝辉, 等. 挤压态Mg‒8Gd‒1Er‒0.5Zr合金的抗蠕变性能. 稀有金属材料与工程, 2019, 48(2): 545
    [15] Kula A, Silva C J, Niewczas M. Grain size effect on deformation behaviour of Mg‒Sc alloys. J Alloys Compd, 2017, 727(15): 642
    [16] Lin H, Yang M, Tang H, et al. Effect of minor Sc on the microstructure and mechanical properties of AZ91 magnesium alloy. Prog Nat Sci Mater Int, 2018, 28(1): 66 doi: 10.1016/j.pnsc.2018.01.006
    [17] Munir K, Lin J, Wen C, et al. Mechanical, corrosion, and biocompatibility properties of Mg‒Zr‒Sr‒Sc alloys for biodegradable implant applications. Acta Biomater, 2020, 102: 493 doi: 10.1016/j.actbio.2019.12.001
    [18] Liu J N, Lin Y L, Bian D, et al. In vitro and in vivo studies of Mg‒30Sc alloys with different phase structure for potential usage within bone. Acta Biomater, 2019, 98: 50 doi: 10.1016/j.actbio.2019.03.009
    [19] Andon D, Ogawa Y, Suzuki T, et al. Age-hardening effect by phase transformation of high Sc containing Mg alloy. Mater Lett, 2015, 161(15): 5
    [20] Liu X, Wang W, Yuan L L, et al. Superfast preparation of Al‒Sc alloys with high Sc content by spark plasma sintering. Powder Metall Technol, 2020, 38(2): 126

    柳旭, 王炜, 元琳琳, 等. 放电等离子烧结快速制备高钪含量铝钪合金. 粉末冶金技术, 2020, 38(2): 126
    [21] Zhuang T Y, Zhang J L, Wang F, et al. Research progress on the microwave sintering mechanism of metal powders. Powder Metall Technol, 2019, 37(5): 392

    庄天涯, 张际亮, 王霏, 等. 金属粉末微波烧结机理研究进展. 粉末冶金技术, 2019, 37(5): 392
    [22] Ren F Y, Xu L, Li C Y, et al. Research progress in the preparation of particle-reinforced magnesium matrix composites by powder metallurgy. Powder Metall Technol, 2020, 38(1): 66

    任峰岩, 许磊, 历长云, 等. 粉末冶金法制备颗粒增强镁基复合材料的研究进展. 粉末冶金技术, 2020, 38(1): 66
    [23] Silva C J, Kula A, Mishra R K, et al. Mechanical properties of Mg‒Sc binary alloys under compression. Mater Sci Eng A, 2017, 692: 199 doi: 10.1016/j.msea.2017.03.053
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1859
  • HTML全文浏览量:  91
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回