金属增材制造用钛粉制备研究

郭广浩 唐超兰 楚瑞坤

郭广浩, 唐超兰, 楚瑞坤. 金属增材制造用钛粉制备研究[J]. 粉末冶金技术, 2022, 40(4): 340-350. doi: 10.19591/j.cnki.cn11-1974/tf.2020070006
引用本文: 郭广浩, 唐超兰, 楚瑞坤. 金属增材制造用钛粉制备研究[J]. 粉末冶金技术, 2022, 40(4): 340-350. doi: 10.19591/j.cnki.cn11-1974/tf.2020070006
GUO Guang-hao, TANG Chao-lan, CHU Rui-kun. Research on preparation of titanium powders used for metal additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(4): 340-350. doi: 10.19591/j.cnki.cn11-1974/tf.2020070006
Citation: GUO Guang-hao, TANG Chao-lan, CHU Rui-kun. Research on preparation of titanium powders used for metal additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(4): 340-350. doi: 10.19591/j.cnki.cn11-1974/tf.2020070006

金属增材制造用钛粉制备研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020070006
基金项目: 国家重点研发计划项目(2017YFB0305800);国际科技合作重点国别产业技术研发合作项目(BZ2018010)
详细信息
    通讯作者:

    E-mail: tangchl@gdut.edu.cn

  • 中图分类号: TF123

Research on preparation of titanium powders used for metal additive manufacturing

More Information
  • 摘要: 金属增材制造技术正朝着产业化的方向发展,钛粉是金属增材制造领域的主流原料之一。本文概述了钛及钛合金的熔炼技术,重点介绍了感应熔炼,并对目前主流的钛粉制备技术进行了对比和分析,包括基本原理、优缺点和影响粉末特性的因素等。此外,还介绍了数值模拟在钛粉制备上的应用,并对钛粉制备工艺在金属增材制造领域的发展做出了展望。
  • 图  1  不同热源熔炼技术原理图:(a)真空自耗电弧熔炼;(b)电子束冷床熔炼;(c)感应熔炼

    Figure  1.  Schematic diagram of the smelting technology with the different heat sources: (a) vacuum arc remelting; (b) electron beam cold hearth melting; (c) induction melting

    图  2  等离子旋转电极法原理图

    Figure  2.  Schematic diagram of PERP

    图  3  等离子旋转电极破碎机制[37]:(a)直接液滴破碎;(b)液线破碎;(c)液膜破碎

    Figure  3.  Disintegration model of PREP[37]: (a) direct drop formation; (b) ligament disintegration; (c) film disintegration

    图  4  等离子体雾化法原理图

    Figure  4.  Schematic diagram of PA

    图  5  钛粉制备技术原理图:(a)真空感应熔炼气雾化法;(b)电极感应熔炼气雾化法

    Figure  5.  Schematic diagram of the titanium powder preparation technology: (a) vacuum inert gas atomization; (b) electrode induction melting gas atomization

    图  6  典型二次破碎模型[59]

    Figure  6.  Typical model of the secondary disintegration[59]

    表  1  不同熔炼方法对比

    Table  1.   Comparison of the different smelting methods

    熔炼方法热源杂质元素效率成本
    真空自耗电弧熔炼电弧
    电子束冷床熔炼电子束
    感应熔炼电磁加热最低
    下载: 导出CSV

    表  2  三种等离子旋转电极技术对比[3435]

    Table  2.   Comparison of the three PREP technologies[3435]

    等离子旋转电极技术工作转速 / (r·min‒1)生产效率细粉收得率粉末中位粒径 / μm自耗电极直径 / mm
    PREP14000~1600012075
    SL-PREP1800090100
    SS-PREP33000最高最高4550~80
    下载: 导出CSV

    表  3  几种钛粉制备方法对比

    Table  3.   Comparison of the several preparation methods for the titanium powders

    制粉方法粒度分布范围效率球形度细粉收得率生产成本空心率
    PREP很高几乎没有
    PA
    VIGA
    EIGA
    下载: 导出CSV

    表  4  Ansys和Comsol数值模拟软件对比

    Table  4.   Comparison of Ansys and Comsol

    数值模拟软件发展时间物理场选择网格划分上手难度主要应用范围
    Ansys主要是单相物理场工业
    Comsol任意多物理场耦合容易学术
    下载: 导出CSV
  • [1] Neikter M, Åkerfeldt P, Pederson R, et al. Microstructural characterization and comparison of Ti‒6Al‒4V manufactured with different additive manufacturing processes. Mater Charact, 2018, 143: 68 doi: 10.1016/j.matchar.2018.02.003
    [2] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater, 2015, 85: 74 doi: 10.1016/j.actamat.2014.11.028
    [3] Yang J J, Yu H C, Yin J, et al. Formation and control of martensite in Ti‒6Al‒4V alloy produced by selective laser melting. Mater Des, 2016, 108: 308 doi: 10.1016/j.matdes.2016.06.117
    [4] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater, 2010, 58(9): 3303 doi: 10.1016/j.actamat.2010.02.004
    [5] Li A, Liu S F, Wang B J, et al. Research progress on preparation of metal powder for 3D printing. J Iron Steel Res, 2018, 30(6): 419

    李安, 刘世锋, 王伯健, 等. 3D打印用金属粉末制备技术研究进展. 钢铁研究学报, 2018, 30(6): 419
    [6] Wen Y, Jiang T, Wu G H, et al. Research status on microstructures and properties of two-phase titanium alloys by 3D printing. Fail Anal Prev, 2016, 11(1): 42 doi: 10.3969/j.issn.1673-6214.2016.01.009

    文艺, 姜涛, 邬冠华, 等. 3D打印两相钛合金组织性能研究现状. 失效分析与预防, 2016, 11(1): 42 doi: 10.3969/j.issn.1673-6214.2016.01.009
    [7] Ellyson B, Brochu M, Brochu M. Characterization of bending vibration fatigue of SLM fabricated Ti‒6Al‒4V. Int J Fatigue, 2017, 99: 25 doi: 10.1016/j.ijfatigue.2017.02.005
    [8] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti‒6Al‒4V alloy by high-power laser solid forming. Acta Mater, 2017, 132: 82 doi: 10.1016/j.actamat.2017.04.026
    [9] Tang H P, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti‒6Al‒4V by selective electron beam melting. JOM, 2015, 67(3): 555 doi: 10.1007/s11837-015-1300-4
    [10] Huang C S. Study on the Preparation of Ti‒6Al‒4V Powders by EIGA Method and the Microstructure and Properties of Selective Laser Melted Parts [Dissertation]. Guangzhou: South China University of Technology, 2019

    黄传收. EIGA法制备Ti‒6Al‒4V粉末及其SLM组织与性能研究[学位论文]. 广州: 华南理工大学, 2019
    [11] Ding X. My country's 3D printing development is facing the dual bottleneck of materials and industrial innovation. Adv Mater Ind, 2015(4): 68 doi: 10.3969/j.issn.1008-892X.2015.04.014

    丁雪. 我国3D打印发展面临材料与产业创新双重瓶颈. 新材料产业, 2015(4): 68 doi: 10.3969/j.issn.1008-892X.2015.04.014
    [12] Zhang F, Gao Z J, Ma T, et al. Metal powder materials for additive manufacturing and their preparation methods. Ind Technol Innov, 2017, 4(4): 59

    张飞, 高正江, 马腾, 等. 增材制造用金属粉末材料及其制备技术. 工业技术创新, 2017, 4(4): 59
    [13] Sun J F, Yang Y Q, Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by taguchi method. Opt Laser Technol, 2013, 49: 118 doi: 10.1016/j.optlastec.2012.12.002
    [14] Mitchell A. The electron beam melting and refining of titanium alloys. Mater Sci Eng A, 1999, 263(2): 217 doi: 10.1016/S0921-5093(98)01177-0
    [15] Yuan W. Comparative analysis on melting process of TC4 titanium alloy. Nonferrous Met Process, 2018, 47(2): 23 doi: 10.3969/j.issn.1671-6795.2018.02.006

    袁蔚. TC4钛合金熔炼工艺的对比分析. 有色金属加工, 2018, 47(2): 23 doi: 10.3969/j.issn.1671-6795.2018.02.006
    [16] Liu Q L, Li X M, Jiang Y H. Research progress of electron beam clod hearth melting for titanium and titanium alloys. Hot Working Technol, 2016, 45(9): 9

    刘千里, 李向明, 蒋业华. 电子束冷床熔炼钛及钛合金的研究进展. 热加工工艺, 2016, 45(9): 9
    [17] Yue X, Yang G Q, Li W Q, et al. Effect of melting method on chemical composition and microstructure homogeneity of TC17 titanium alloy ingots and bars. Titanium Ind Prog, 2016, 33(5): 11

    岳旭, 杨国庆, 李渭清, 等. 熔炼方式对TC17钛合金铸锭化学成分及棒材组织均匀性的影响研究. 钛工业进展, 2016, 33(5): 11
    [18] Yu J. On the development and future trend of vacuum induction melting technology. Sci Technol, 2016, 26(33): 100 doi: 10.3969/j.issn.1672-8289.2016.33.085

    俞杰. 浅谈真空感应熔炼技术的发展及未来动向. 科技展望, 2016, 26(33): 100 doi: 10.3969/j.issn.1672-8289.2016.33.085
    [19] Zhang Y H. Research on the Numerical Simulation of Temperature Field in Induction Heating [Dissertation]. Wuxi: Jiangnan University, 2008

    张月红. 感应加热温度场的数值模拟[学位论文]. 无锡: 江南大学, 2008
    [20] Chen Y Y, Xiao S L, Kong F T. Application and investment casting of high temperature titanium alloys and TiAl intermetallics // The 11th National Titanium and Titanium Alloy Academic Exchange Conference. Baoji, 2002: 39

    陈玉勇, 肖树龙, 孔凡涛. 高温钛合金及TiAl金属间化合物的精密铸造技术及应用前景//第十一届全国钛及钛合金学术交流会议. 宝鸡, 2002: 39
    [21] Song Q Z, Dong H, E D M, et al. Development of electromagnetic levitation vacuum melting casting technology. Vacuum, 2019, 56(6): 43

    宋青竹, 董辉, 鄂东梅, 等. 电磁悬浮真空熔铸技术进展. 真空, 2019, 56(6): 43
    [22] Zhou Z M, Wang Y P, Xia H, et al. Research development of manufacture processing of Cu‒Cr alloy. Mater Rep, 2008, 22(3): 44 doi: 10.3321/j.issn:1005-023X.2008.03.011

    周志明, 王亚平, 夏华, 等. Cu‒Cr合金制备技术的研究进展. 材料导报, 2008, 22(3): 44 doi: 10.3321/j.issn:1005-023X.2008.03.011
    [23] Zhao C F, Wu B, Yang S J, et al. Effect of heat treatment on microstructure and hardness of AlCoCrFeNiTi0.5 high entropy alloy. J Guangxi Univ Nat Sci, 2014, 39(2): 407

    赵春凤, 吴波, 杨上金, 等. 热处理工艺对AlCoCrFeNiTi0.5高熵合金的显微组织和硬度的影响. 广西大学学报:自然科学版, 2014, 39(2): 407
    [24] He Y L, Zhang Z Y, Zhang F L, et al. Development and application of key technology and equipment of the vacuum induction levitation furnace // 2018 China Foundry Congress. Suzhou, 2008: 557

    何永亮, 张志勇, 张福利, 等. 真空感应悬浮炉关键技术及装备的发展与应用//2018中国铸造活动周. 苏州, 2018: 557
    [25] Wei M W, Chen S Y, Guo K K, et al. Preparation of TA15 titanium alloy powder by EIGA for laser 3D printing. Mater Rev, 2017, 31(12): 64 doi: 10.11896/j.issn.1005-023X.2017.012.014

    魏明炜, 陈岁元, 郭快快, 等. EIGA法制备激光3D打印用TA15钛合金粉末. 材料导报, 2017, 31(12): 64 doi: 10.11896/j.issn.1005-023X.2017.012.014
    [26] Gao C F, Yu W Y, Zhu Q L, et al. Performance characteristics and research progress of metal powders for 3D printing. Powder Metall Ind, 2017, 27(5): 53

    高超峰, 余伟泳, 朱权利, 等. 3D打印用金属粉末的性能特征及研究进展. 粉末冶金工业, 2017, 27(5): 53
    [27] Yang Q Z, Wei Y P, Gao P, et al. Research progress of metal additive manufacturing technologies and related materials. Mater Rev, 2016, 30(Suppl 1): 107

    杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展. 材料导报, 2016, 30(增刊1): 107
    [28] Zhou H P, Li S K, Li B, et al. Development status of preparation technology of metal powder for 3D printing. China Met Bull, 2016(8): 88

    邹海平, 李上奎, 李博, 等. 3D打印用金属粉末的制备技术发展现状. 中国金属通报, 2016(8): 88
    [29] Le G M, Li Q, Dong X F, et al. Fabrication techniques of spherical-shaped metal powders suitable for additive manufacturing. Rare Met Mater Eng, 2017, 46(4): 1162

    乐国敏, 李强, 董鲜峰, 等. 适用于金属增材制造的球形粉体制备技术. 稀有金属材料与工程, 2017, 46(4): 1162
    [30] He W W, Tang H P, Chen B K, et al. Study on process and particle size prediction on high-Nb TiAl powder produced by PREP. Titanium Ind Prog, 2019, 36(3): 26

    贺卫卫, 汤慧萍, 陈斌科, 等. PREP法制备高铌TiAl粉末工艺研究及粒度预测. 钛工业进展, 2019, 36(3): 26
    [31] Chen Y Y, Xiao Z Y, Li S K, et al. Research progress on the preparation methods of metal powder for 3D printing. Powder Metall Ind, 2018, 28(4): 56

    陈莹莹, 肖志瑜, 李上奎, 等. 3D打印用金属粉末的制备技术及其研究进展. 粉末冶金工业, 2018, 28(4): 56
    [32] Guo W M, Chen S D, Feng D. Study on process on nickel superalloy powder by the plasmarotationelectrode. Aviat Maint Eng, 1999(5): 44

    国为民, 陈生大, 冯涤. 等离子旋转电极法制取镍基高温合金粉末工世的研究. 航空工程与维修, 1999(5): 44
    [33] Huang K, Zhao Y, Zhang C S, et al. Properties characterization of spherical CuAl10Fe3 copper alloy powders prepared by plasma rotating electrode processing. Mater Rep, 2019, 33(22): 3783 doi: 10.11896/cldb.18080057

    黄柯, 赵阳, 张昌松, 等. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征. 材料导报, 2019, 33(22): 3783 doi: 10.11896/cldb.18080057
    [34] Sun N G, Chen B K, Xiang C S, et al. The plasma rotating electrode processing machine for high quality 3D printing powder production. Heavy Mach, 2019(5): 36 doi: 10.3969/j.issn.1001-196X.2019.05.007

    孙念光, 陈斌科, 向长淑, 等. 3D打印粉末生产用等离子旋转电极雾化制粉机. 重型机械, 2019(5): 36 doi: 10.3969/j.issn.1001-196X.2019.05.007
    [35] Zhao X H, Wang C, Pan F F, et al. A review on the methods and additive manufacturing application of spherical titanium alloy powder. Powder Metall Ind, 2019, 29(6): 71

    赵霄昊, 王晨, 潘霏霏, 等. 球形钛合金粉末制备技术及增材制造应用研究进展. 粉末冶金工业, 2019, 29(6): 71
    [36] Lei N Z. Study on Processing and Properties of Spherical Metal Powder Prepared by Plasma Rotating Electrode Process [Dissertation]. Xi’ an: Xi’ an University of Technology, 2019

    雷囡芝. 等离子旋转电极雾化法制备球形金属粉末的工艺及性能研究[学位论文]. 西安: 西安理工大学, 2019
    [37] Liu J X, Yu Q B, Guo Q. Experimental investigation of liquid disintegration by rotary cups. Chem Eng Sci, 2012, 73: 44 doi: 10.1016/j.ces.2012.01.010
    [38] Frost A R. Rotary atomization in the ligament formation mode. J Agric Eng Res, 1981, 26(1): 63 doi: 10.1016/0021-8634(81)90127-X
    [39] Yang T, Yin Z X, Qiu J E, et al. Research on the static and dynamic behavior on the plasma torch used for plasma atomization. Vacuum, 2021, 58(5): 66

    杨彤, 尹政鑫, 邱吉尔, 等. 等离子体雾化用等离子体发生器动静态特性研究. 真空, 2021, 58(5): 66
    [40] Liao X J, Lai Q, Zhang S L. Current situation and development prospect of preparation technologies for spherical titanium and titanium alloy powder. Iron Steel Vanadium Titanium, 2017, 38(5): 1 doi: 10.7513/j.issn.1004-7638.2017.05.001

    廖先杰, 赖奇, 张树立. 球形钛及钛合金粉制备技术现状及展望. 钢铁钒钛, 2017, 38(5): 1 doi: 10.7513/j.issn.1004-7638.2017.05.001
    [41] Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing. World Nonferrous Met, 2016(12): 150

    梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术. 世界有色金属, 2016(12): 150
    [42] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019
    [43] Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti‒6Al‒4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol, 2018, 333: 38 doi: 10.1016/j.powtec.2018.04.013
    [44] Dai Y, Li L. Current status and development trend of metal-based 3D printing powder materials preparation technology. Adv Mater Ind, 2016(6): 23 doi: 10.3969/j.issn.1008-892X.2016.06.005

    戴煜, 李礼. 金属基3D打印粉体材料制备技术现状及发展趋势. 新材料产业, 2016(6): 23 doi: 10.3969/j.issn.1008-892X.2016.06.005
    [45] Sun S J. Canada PyroGenesis Co., Ltd. has developed a new plasma atomization technology for producing fine metal powder. Powder Metall Ind, 2017, 27(6): 75

    孙世杰. 加拿大PyroGenesis有限公司开发出新的生产细颗粒金属粉末的等离子雾化技术. 粉末冶金工业, 2017, 27(6): 75
    [46] Dai Y, Li L. Technical analysis of preparation of titanium alloy powder for metal 3D printing by plasma torch atomization. Adv Mater Ind, 2018(11): 55

    戴煜, 李礼. 等离子火炬雾化制备金属3D打印专用钛合金粉体技术分析. 新材料产业, 2018(11): 55
    [47] Liu Y, You Q S, Zhu H M, et al. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization. Powder Metall Technol, 2021, 39(6): 537

    刘艳, 尤齐燊, 朱红梅, 等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末. 粉末冶金技术, 2021, 39(6): 537
    [48] Wang C J, Zhang M X, Chen Q M, et al. Characterization of high strength PH13-8Mosteel powders prepared by vacuum induction melting gas atomization method. Mater Heat Treat, 2020, 41(1): 94

    王长军, 张梦醒, 陈清明, 等. 真空感应熔炼气雾化法制备高强度PH13-8Mo钢粉末的特性表征. 材料热处理学报, 2020, 41(1): 94
    [49] Gao Z J, Zhou X L, Li J H, et al. A review: high-performance spherical metal powder preparation methods. Therm Spray Technol, 2018, 10(3): 1 doi: 10.3969/j.issn.1674-7127.2018.03.001

    高正江, 周香林, 李景昊, 等. 高性能球形金属粉末制备技术进展. 热喷涂技术, 2018, 10(3): 1 doi: 10.3969/j.issn.1674-7127.2018.03.001
    [50] Zhao S Y, Chen G, Tan P, et al. Characterization of spherical TC4 powders by gas atomization and its interstitial elemental control. Chin J Nonferrous Met, 2016, 26(5): 980

    赵少阳, 陈刚, 谈萍, 等. 球形TC4粉末的气雾化制备、表征及间隙元素控制. 中国有色金属学报, 2016, 26(5): 980
    [51] Liu C. Research on Flow and Heat Transfer Mechanism of Liquid Metals in Melt Delivery Nozzle During Gas Atomization Process [Dissertation]. Harbin: Harbin Institute of Technology, 2020

    刘畅. 气体雾化制粉过程中金属熔体在导流管内的流动与传热机理研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2020
    [52] Tian C, Chen Z, Liu B T, et al. Preparation process optimization of TC4 titanium alloy powder for additive manufacturing. J Heilongjiang Univ Sci Technol, 2020, 30(2): 214 doi: 10.3969/j.issn.2095-7262.2020.02.018

    田操, 陈卓, 刘邦涛, 等. 增材制造用TC4钛合金粉末制备工艺的优化. 黑龙江科技大学学报, 2020, 30(2): 214 doi: 10.3969/j.issn.2095-7262.2020.02.018
    [53] Zhang N, Chen S Y, Yu X, et al. Preparation of TC4 alloy powder for laser 3D printing. J Mater Metall, 2016, 15(4): 277

    张宁, 陈岁元, 于笑, 等. 激光3D打印TC4球形合金粉末的制备. 材料与冶金学报, 2016, 15(4): 277
    [54] He W W, Jia W P, Yang G Y, et al. Research progress in preparation of TiAl pre-alloyed powder. Titanium Ind Prog, 2012, 29(4): 1 doi: 10.3969/j.issn.1009-9964.2012.04.001

    贺卫卫, 贾文鹏, 杨广宇, 等. TiAl预合金粉末制备的研究进展. 钛工业进展, 2012, 29(4): 1 doi: 10.3969/j.issn.1009-9964.2012.04.001
    [55] Lubanska H. Correlation of spray ring data for gas atomization of liquid metals. JOM, 1970, 22: 45
    [56] Long Q L, Wu W H, Lu L, et al. Effect of powder on properties of Ti‒6Al‒4V alloy powder prepared by EIGA process. China Powder Sci Technol, 2018, 24(4): 49

    龙倩蕾, 吴文恒, 卢林, 等. 熔炼功率对EIGA制备Ti‒6Al‒4V合金粉末特性的影响. 中国粉体技术, 2018, 24(4): 49
    [57] Zhou K, Wei B. Determination of the thermophysical properties of liquid and solid Ti–6Al–4V alloy. Appl Phys A, 2016, 122: 248 doi: 10.1007/s00339-016-9783-6
    [58] Paradis P F, Ishikawa T, Yoda S. Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys, 2002, 23(3): 825 doi: 10.1023/A:1015459222027
    [59] Guo K K, Liu C S, Chen S Y, et al. High pressure EIGA preparation and 3D printing capability of Ti‒6Al‒4V powder. Trans Nonferrous Met Soc China, 2020, 30(1): 147 doi: 10.1016/S1003-6326(19)65187-3
    [60] Lu H, Li S J, Du H Z, et al. Secondary breakup characteristics and mechanism of single electrified Al/N-Decanenanofluid fuel droplet in electrostatic field. Appl Sci, 2020, 10(15): 5332 doi: 10.3390/app10155332
    [61] Soni S K, Kirar P K, Kolhe P, et al. Deformation and breakup of droplets in an oblique continuous air stream. Int J Multiph Flow, 2020, 122: 103141 doi: 10.1016/j.ijmultiphaseflow.2019.103141
    [62] Stefanitsis D, Strotos G, Nikolopoulos N, et al. Improved droplet breakup models for spray applications. Int J Heat Fluid Flow, 2019, 76: 274 doi: 10.1016/j.ijheatfluidflow.2019.02.010
    [63] Zheng M Y. Gas Atomization Technology Research of Titanium Alloy Powders for Additive Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    郑明月. 气雾化法制备增材制造用钛合金粉末研究[学位论文]. 北京: 北京科技大学, 2019
    [64] Mao X H, Liu X, Xie H W, et al. Effects of preparation methods on the properties of Ti‒6Al‒4V alloys powders for 3D printing. Mater Res Appl, 2017, 11(1): 13 doi: 10.3969/j.issn.1673-9981.2017.01.004

    毛新华, 刘辛, 谢焕文, 等. 制备方法对3D打印用Ti‒6Al‒4V合金粉体特性的影响. 材料研究与应用, 2017, 11(1): 13 doi: 10.3969/j.issn.1673-9981.2017.01.004
    [65] Ma C Y. Numerical Simulation of Electromagnetic Field in Vacuum Induction Melting [Dissertation]. Shenyang: Northeastern University, 2013

    马长勇. 真空感应熔炼电磁场的数值模拟[学位论文]. 沈阳: 东北大学, 2013
    [66] Ouyang H W, Wang Q, Liu Z M. Numerical study on abrupt change of flow field in close-coupled gas atomization. Mater Sci Eng Powder Metall, 2010, 15(2): 96 doi: 10.3969/j.issn.1673-0224.2010.02.002

    欧阳鸿武, 王琼, 刘卓民. 紧耦合气雾化流场结构突变过程的数值模拟. 粉末冶金材料科学与工程, 2010, 15(2): 96 doi: 10.3969/j.issn.1673-0224.2010.02.002
    [67] Guo K K, Chen J, Liu C S, et al. Numerical simulation of the intersection angle influence on atomization process of powders produced by VIGA. J Northeastern Univ Nat Sci, 2020, 41(5): 729 doi: 10.12068/j.issn.1005-3026.2020.05.020

    郭快快, 陈进, 刘常升, 等. 数值模拟喷射夹角对VIGA制粉雾化过程的影响. 东北大学学报(自然科学版), 2020, 41(5): 729 doi: 10.12068/j.issn.1005-3026.2020.05.020
    [68] Tanaka M, Ushio M, Lowke J J. Numerical study of gas tungsten arc plasma with anode melting. Vacuum, 2004, 73(3-4): 381 doi: 10.1016/j.vacuum.2003.12.058
    [69] Wang S H, Cui S P, Zhao D G, et al. Numerical simulation of superheat in atomization of SmFemelt. Nonferrous Met Extr Metall, 2018(1): 59

    王书桓, 崔少璞, 赵定国, 等. 高温熔体雾化过程中过热度的数值模拟. 有色金属(冶炼部分), 2018(1): 59
    [70] Bojarevics V, Roy A, Pericleous K. Numerical model of electrode induction melting for gas atomization. COMPEL, 2011, 30(5): 1455 doi: 10.1108/03321641111152612
    [71] Iatcheva I I, Stancheva R, Tahrilov H, et al. Coupled electromagnetic-thermal field investigation in induction heating device. Solid State Phenom, 2009, 152-153: 407 doi: 10.4028/www.scientific.net/SSP.152-153.407
    [72] Shan F, Xia M, Ge C C. An EIGA driven coupled of electromagnetic-thermal field modeling in the induction melting process. Int J Mater Form, 2019, 12(4): 615 doi: 10.1007/s12289-018-1438-z
    [73] Heidloff A, Rieken J, Anderson I, et al. Advancements in Ti alloy powder production by close-coupled gas atomization // Powder Metall. SanFrancisco, 2011: 1
    [74] Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sin, 2018, 67(17): 41

    夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41
    [75] Wang J J, Hao J J, Guo Z M, et al. Numerical simulation on preparation of spherical powder by RF induction plasma. China Sciencepaper, 2015, 10(22): 2642 doi: 10.3969/j.issn.2095-2783.2015.22.014

    王建军, 郝俊杰, 郭志猛, 等. 射频等离子体制备球形粉末的数值模拟. 中国科技论文, 2015, 10(22): 2642 doi: 10.3969/j.issn.2095-2783.2015.22.014
    [76] Zheng H. Experimentation and Numerical Simulation Study on Spheroidization of Titanium Powder in Inductively Coupled Plasma [Dissertation]. Nanchang: East China Jiaotong University, 2016

    郑华. 感应耦合热等离子体球化钛粉的数值模拟与试验研究[学位论文]. 南昌: 华东交通大学, 2016
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  401
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回