闭孔金属基复合泡沫材料制备技术研究进展

历长云 杨二阔 李雷 许磊 米国发

历长云, 杨二阔, 李雷, 许磊, 米国发. 闭孔金属基复合泡沫材料制备技术研究进展[J]. 粉末冶金技术, 2020, 38(5): 383-390. doi: 10.19591/j.cnki.cn11-1974/tf.2020070009
引用本文: 历长云, 杨二阔, 李雷, 许磊, 米国发. 闭孔金属基复合泡沫材料制备技术研究进展[J]. 粉末冶金技术, 2020, 38(5): 383-390. doi: 10.19591/j.cnki.cn11-1974/tf.2020070009
LI Chang-yun, YANG Er-kuo, LI Lei, XU Lei, MI Guo-fa. Research progress and preparation of closed-cell metal matrix syntactic foams[J]. Powder Metallurgy Technology, 2020, 38(5): 383-390. doi: 10.19591/j.cnki.cn11-1974/tf.2020070009
Citation: LI Chang-yun, YANG Er-kuo, LI Lei, XU Lei, MI Guo-fa. Research progress and preparation of closed-cell metal matrix syntactic foams[J]. Powder Metallurgy Technology, 2020, 38(5): 383-390. doi: 10.19591/j.cnki.cn11-1974/tf.2020070009

闭孔金属基复合泡沫材料制备技术研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020070009
基金项目: 

中国石油大学(北京)克拉玛依校区科研启动基金资助项目 XQZX20200016

中国石油大学(北京)克拉玛依校区科研启动基金资助项目 XQZX20200019

克拉玛依市科技计划资助项目 XQZX20200036

详细信息
    通讯作者:

    许磊, E-mail: xulei_80@126.com

  • 中图分类号: B333;TF12

Research progress and preparation of closed-cell metal matrix syntactic foams

More Information
  • 摘要: 闭孔金属基复合泡沫材料是一种新型多孔复合材料,主要以空心微球和基体粉末为原料,将空心微球填充到金属或合金基体中复合而成;因其具有轻质、高强、良好的阻尼、吸能、隔热、隔音及电磁屏蔽等诸多优异性能,在减震、缓冲阻尼及防撞击等相关领域具有广泛的应用价值。本文主要介绍了利用空心微球制备闭孔金属基复合泡沫材料的方法,总结了其制备过程中存在的问题,并概述了闭孔金属基复合泡沫材料的应用。
  • 图  1  飞灰显微形貌

    Figure  1.  Microstructure of the fly ash

    图  2  Al2O3空心微球显微形貌

    Figure  2.  Microstructure of the Al2O3 hollow microspheres

    图  3  粉末冶金法制备闭孔金属基复合泡沫材料工艺流程[31]

    Figure  3.  Typical preparation process of the closed-cell metal matrix syntactic foams by powder metallurgy

    图  4  热压烧结法制备闭孔金属基复合泡沫材料的微观结构:(a)空心Al2O3/AZ91D;(b)空心玻璃/AZ91D

    Figure  4.  Microstructure of the closed-cell metal matrix syntactic foams prepared by hot pressing sintering: (a) Al2O3/AZ91D, (b) hollow glass microsphere/AZ91D

    图  5  Al2O3/AZ91D闭孔金属基复合泡沫材料动态冲击下的真应力应变曲线

    Figure  5.  The true stress-strain curve of the Al2O3/AZ91D closed-cell MMSFs in dynamic impact

  • [1] Yu M, Zhu P, Ma Y Q. Experimental study and numerical prediction of tensile strength properties and failure modes of hollow spheres filled syntactic foams. Comput Mater Sci, 2012, 63: 232 doi: 10.1016/j.commatsci.2012.06.024
    [2] Májlinger K. Wear properties of hybrid AlSi12 matrix syntactic foams. Int J Mater Res, 2015, 106(11): 1165 doi: 10.3139/146.111290
    [3] Wu G H, Dou Z Y, Sun D L, et al. Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr Mater, 2007, 56(3): 221 doi: 10.1016/j.scriptamat.2006.10.008
    [4] Matsunaga T, Kim J K, Hardcastle S, et al. Crystallinity and selected properties of fly ash particles. Mater Sci Eng A, 2002, 325: 333 doi: 10.1016/S0921-5093(01)01466-6
    [5] Szlancsik A, Katona B, Kemeny A, et al. On the filler materials of metal matrix syntactic foams. Materials, 2019, 12(12): 2023 doi: 10.3390/ma12122023
    [6] Braszczyńska-Malik K N, Kamieniak J. AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique. Mater Charact, 2017, 128: 209 doi: 10.1016/j.matchar.2017.04.005
    [7] Huang Z Q, Yu S R, LI M Q. Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites. Trans Nonferrous Met Soc China, 2010, 20: 458 doi: 10.1016/S1003-6326(09)60162-X
    [8] Rajan T P D, Pillai R M, Pai B C, et al. Fabrication and characterisation of Al–7Si–0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Compos Sci Technol, 2007, 67(15-16): 3369 doi: 10.1016/j.compscitech.2007.03.028
    [9] Orbulov I, Májlinger K. On the microstructure of ceramic hollow microspheres. Period Polytech Mech Eng, 2010, 54(2): 89 doi: 10.3311/pp.me.2010-2.05
    [10] Santa Maria J A, Schultz B F, Ferguson J B, et al. Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al–A380–Al2O3 syntactic foams. J Mater Sci, 2014, 49(3): 1267 doi: 10.1007/s10853-013-7810-y
    [11] Wu R B, Zhou K, Yue C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci, 2015, 72: 1 doi: 10.1016/j.pmatsci.2015.01.003
    [12] Shcherban N D. Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J Ind Eng Chem, 2017, 50: 15 doi: 10.1016/j.jiec.2017.02.002
    [13] Shunmugasamy V C, Zeltmann S E, Gupta N, et al. Compressive characterization of single porous SiC hollow particles. JOM, 2014, 66(6): 892 doi: 10.1007/s11837-014-0954-7
    [14] Wang X P, Zhang L, Yang J J, et al. Preparation and characterization of SiC hollow spheres. Mater Rev. 2009, 23(14): 22 doi: 10.3321/j.issn:1005-023X.2009.14.007

    王雪平, 张磊, 杨久俊, 等. SiC空心球的制备与表征. 材料导报, 2009, 23(14): 22 doi: 10.3321/j.issn:1005-023X.2009.14.007
    [15] Luong D D, Strbik Ⅲ O M, Hammond V H, et al. Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. J Alloys Compd, 2013, 550: 412 doi: 10.1016/j.jallcom.2012.10.171
    [16] Lin Y F, Zhang Q, Ma X Y, et al. Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres. Composites Part A, 2016, 87: 194 doi: 10.1016/j.compositesa.2016.05.001
    [17] Taherishargh M, Belova I V, Murch G E, et al. Pumice/aluminium syntactic foam. Mate Sci Eng A, 2015, 635: 102 doi: 10.1016/j.msea.2015.03.061
    [18] Chen J M, Cui X M, Luo X, et al. The structure and property of Al matrix syntactic foam fabricated with ceramic microspheres prepared by vacuum casting method. Hunan Nonferrous Met, 2012, 28(3): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203015.htm

    陈健美, 崔学敏, 罗翔, 等. 真空吸铸法制备铝基空心陶瓷球泡沫材料的结构和性能. 湖南有色金属, 2012, 28(3): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203015.htm
    [19] Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J Compos Mater, 2016, 41(17): 2105 http://adsabs.harvard.edu/abs/2007JCoMa..41.2105Z
    [20] Orbulov I N. Metal matrix syntactic foams produced by pressure infiltration — The effect of infiltration parameters. Mater Sci Eng A, 2013, 583: 11 doi: 10.1016/j.msea.2013.06.066
    [21] Vogiatzis C A, Skolianos S M. On the sintering mechanisms and microstructure of aluminium–ceramic cenospheres syntactic foams produced by powder metallurgy route. Composites Part A, 2016, 82: 8 doi: 10.1016/j.compositesa.2015.11.037
    [22] Kamieniak J, Braszczyńska-Malik K N. Problems fabricating cast magnesium matrix composites with aluminosilicate cenospheres. Compos Theory Pract, 2014, 14: 214 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-ac08e878-e1ff-48e2-94c3-1ce26e3a09c0
    [23] Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique. Composites Part A, 2009, 40(3): 279 doi: 10.1016/j.compositesa.2008.12.006
    [24] Rabiei A, O'Neill A T. A study on processing of a composite metal foam via casting. Mater Sci Eng A, 2005, 404(1-2): 159 doi: 10.1016/j.msea.2005.05.089
    [25] Jia C C, Guo H. Composites Course. Beijing: Higher Education Press, 2010

    贾成厂, 郭宏. 复合材料教程. 北京: 高等教育出版社, 2010
    [26] Wei L, Yao G C, Zhang X M, et al. Preparation of foam aluminium by powder metallurgy process. J Northeastern Univ Nat Sci, 2003, 24(11): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200311014.htm

    魏莉, 姚广春, 张晓明, 等. 粉末冶金法制备泡沫铝材料. 东北大学学报(自然科学版), 2003, 24(11): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200311014.htm
    [27] Neville B P, Rabiei A. Composite metal foams processed through powder metallurgy. Mater Des, 2008, 29(2): 388 doi: 10.1016/j.matdes.2007.01.026
    [28] Cho Y J, Lee T S, Lee W, et al. Preparation and characterization of iron matrix syntactic foams with glass microspheres via powder metallurgy. Met Mater Int, 2019, 25(3): 794 doi: 10.1007/s12540-018-00215-w
    [29] Akinwekomi A D, Adebisi J A, Adediran A A. Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Metall Mater Trans A, 2019, 50(9): 4257 doi: 10.1007/s11661-019-05347-1
    [30] Wang Q P, Min F F, Wu Y C, et al. Microstructures and friction and wear properties of fly ash/Al–Mg alloy composites. Chin J Nonferrous Met, 2012, 22(4): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201204009.htm

    王庆平, 闵凡飞. 吴玉程, 等. 粉煤灰/铝–镁合金复合材料的微观组织及摩擦磨损性能. 中国有色金属学报, 2012, 22(4): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201204009.htm
    [31] Lehmhus D, Weise J, Baumeister J, et al. Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams. Proc Mater Sci, 2014, 4: 383 doi: 10.1016/j.mspro.2014.07.578
    [32] Sudarshan, Surappa M K. Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng A, 2007, 480(1-2): 117 http://www.sciencedirect.com/science/article/pii/S0921509307013858
    [33] Manakari V, Parande G, Doddamani M, et al. Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications. Ceram Int, 2019, 45(7): 9302 doi: 10.1016/j.ceramint.2019.01.207
    [34] Banhart J. Aluminium foams for lighter vehicles. Int J Veh Des, 2005, 37(2-3): 114 http://www.ingentaconnect.com/content/ind/ijvd/2005/00000037/F0020002/art00001
  • 加载中
图(5)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  375
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回