TiCP颗粒增强高铬铸铁复合材料的显微组织和力学性能

顾景洪 肖平安 肖利洋 吕蓉 古思敏 赵吉康

顾景洪, 肖平安, 肖利洋, 吕蓉, 古思敏, 赵吉康. TiCP颗粒增强高铬铸铁复合材料的显微组织和力学性能[J]. 粉末冶金技术, 2021, 39(4): 319-325. doi: 10.19591/j.cnki.cn11-1974/tf.2020080001
引用本文: 顾景洪, 肖平安, 肖利洋, 吕蓉, 古思敏, 赵吉康. TiCP颗粒增强高铬铸铁复合材料的显微组织和力学性能[J]. 粉末冶金技术, 2021, 39(4): 319-325. doi: 10.19591/j.cnki.cn11-1974/tf.2020080001
GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. doi: 10.19591/j.cnki.cn11-1974/tf.2020080001
Citation: GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. doi: 10.19591/j.cnki.cn11-1974/tf.2020080001

TiCP颗粒增强高铬铸铁复合材料的显微组织和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020080001
基金项目: 国家自然科学基金资助项目(51574119)
详细信息
    通讯作者:

    E-mail:changcluj@163.com

  • 中图分类号: TF124

Microstructure and mechanical properties of TiC particle enhanced high chromium iron

More Information
  • 摘要: 采用粉末冶金法(powder metallurgy,PM)和超固相线液相烧结技术(super solid phase line liquid phase sintering,SLPS)制备出TiC颗粒增强(TiCP)+含质量分数20%Cr的烧结高铬铸铁(high chromium cast iron,HCCI)复合材料。利用光学显微镜、扫描电子显微镜(scanning electron microscope,SEM)和X射线衍射仪(X-ray diffraction,XRD)研究了TiC颗粒增强相含量(质量分数)对TiCP/HCCI复合材料物相组成、显微组织和力学性能的影响,并开展了后续热处理研究。结果表明:超固相线液相烧结技术制备出的TiCP/HCCI复合材料相对密度均达97%以上,其物相组成为马氏体、奥氏体、M7C3碳化物和TiC。TiC颗粒主要沿着高铬铸铁中金属基体/碳化物界面分布,随着TiC含量增加,复合材料的硬度显著增加,达到HRC 67.2,但冲击韧性却逐步降低,合金断裂机制也由准解理性断裂向沿晶完全解理性断裂转变。经淬火处理后,该类TiCP/HCCI复合材料的硬度可进一步提升至HRC 69.3,有望成为硬度介于高铬铸铁和硬质合金之间的优秀耐磨材料。
  • 图  1  TiC(a)和HCCI(b)原料粉末颗粒显微形貌

    Figure  1.  SEM images of TiC (a) and HCCI (b) raw powder particles

    图  2  TiC颗粒增强烧结高铬铸铁的实际密度、相对密度(a)和硬度(b)

    Figure  2.  Density, relative density (a), and hardness (b) of the TiC particle enhanced sintered HCCI

    图  3  添加不同质量分数TiC增强颗粒的烧结高铬铸铁显微组织:(a);0(b)5%;(c)10%;(d)15%;(e)20%

    Figure  3.  Microstructure of the TiC particle enhanced sintered HCCI with different TiC particle mass fraction: (a) 0; (b) 5%; (c) 10%; (d) 15%; (e) 20%

    图  4  TiC 颗粒强化烧结态高铬铸铁X射线衍射图

    Figure  4.  X-ray diffraction patterns of the TiC particle enhanced sintered HCCI

    图  5  TiC质量分数对烧结高铬铸铁抗弯强度和冲击韧性的影响

    Figure  5.  Effect of TiC particle mass fraction on the bending strength and toughness of the sintered HCCI

    图  7  添加质量分数为15%TiC颗粒的HCCI显微形貌:(a)烧结态;(b)淬火态

    Figure  7.  SEM images of the TiCP/HCCI with 15% TiC particles by mass: (a) the sintered HCCI; (b) the quenched HCCI

    图  8  淬火态TiCP/HCCI的X射线衍射图

    Figure  8.  X-ray diffraction patterns of the quenched TiCP/HCCI

    图  9  淬火处理对烧结高铬铸铁力学性能的影响

    Figure  9.  Effect of the quenched treatment on the mechanical properties of the sintered HCCI

    表  1  烧结高铬铸铁主要化学成分(质量分数)

    Table  1.   Chemical composition of the sintered high chromium cast iron %

    CCrMoSiNiFe
    2.5019.281.580.680.96余量
    下载: 导出CSV

    表  2  TiC增强颗粒粉末特性参数

    Table  2.   Characteristic parameters of the TiC reinforced powders

    成分特性参数
    TiC粉疏松海绵状,氧含量(质量分数)0.13%,游离
    碳含量(质量分数)<0.26%,D50=430 nm
    下载: 导出CSV

    表  3  淬火前后TiC颗粒强化烧结高铬铸铁硬度和力学性能

    Table  3.   Hardness and mechanical properties of the TiC particles enhanced sintered HCCI before and after the quenched treatment

    TiC质量分数/
    %
    处理状态硬度,
    HRC
    冲击韧性/
    (J·cm−2)
    抗弯强度/
    MPa
    0烧结态56.79.62017.8
    淬火态60.25.61577.1
    5烧结态61.42.81334.2
    淬火态65.21.61149.8
    10烧结态63.32.21077.5
    淬火态67.01.41095.0
    15烧结态64.01.81053.2
    淬火态66.61.41089.7
    20烧结态67.21.51049.0
    淬火态69.31.41028.8
    下载: 导出CSV
  • [1] Armstrong R W. The hardness and strength properties of WC−Co composite. Materials, 2011, 4(7): 1287 doi: 10.3390/ma4071287
    [2] Bose A. A perspective on the earliest commercial PM metal-ceramic composite. Int J Powder Metall, 2011, 47(2): 31
    [3] Kambakas K, Tsakiropoulos P. Solidification of high-Cr white cast iron WC particle reinforce steel matrix composites. Mater Sci Eng A, 2005, 413-414: 538 doi: 10.1016/j.msea.2005.08.215
    [4] Li Y F, Gao Y M, Wang B H, et al. Fabrication and interface property of WC−TiC−Co/Cr20 composites. Rare Metal Mat Eng, 2010, 39(4): 715

    李烨飞, 高义民, 王必辉, 等. WC− TiC− Co/Cr20复合材料的制备与界面特性. 稀有金属材料与工程, 2010, 39(4): 715
    [5] Gu J H, Xiao P A, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties. J Alloys Compd, 2018, 740: 485 doi: 10.1016/j.jallcom.2017.11.189
    [6] Li Z T, Xiao P A, Gu J H, et al. Study on microstructure and mechanical properties of Cr15 sintered high chromium cast iron. Mater Sci Technol, 2020, 28(1): 7 doi: 10.11951/j.issn.1005-0299.20180208

    李忠涛, 肖平安, 顾景洪, 等. 烧结Cr15高铬铸铁组织与性能的研究. 材料科学与工艺, 2020, 28(1): 7 doi: 10.11951/j.issn.1005-0299.20180208
    [7] Lu R Q, Xiao P A, Song J Y, et al. Impact abrasive wear resistance of a new type of sintered high chromium cast iron. Mater Sci Eng Powder Metall, 2018, 23(1): 70 doi: 10.3969/j.issn.1673-0224.2018.01.010

    卢瑞青, 肖平安, 宋建勇, 等. 新型烧结高铬铸铁的冲击磨粒磨损性能. 粉末冶金材料科学与工程, 2018, 23(1): 70 doi: 10.3969/j.issn.1673-0224.2018.01.010
    [8] Wang Y S, Zhang X Y, Li F C, et al. Study on an Fe−TiC surface composite produced in situ. Mater Des, 1999, 20(5): 233 doi: 10.1016/S0261-3069(98)00049-1
    [9] Jiang J P, Li S B, Li H L, et al. Effect of in situ formed TiCx grains on the microstructural modification of high chromium white iron. J Alloys Compd, 2017, 726: 430 doi: 10.1016/j.jallcom.2017.07.274
    [10] Jiang J P, Li S B, Hu S L, et al. Effects of in situ formed TiCx on the microstructure, mechanical properties and abrasive wear behavior of a high chromium white iron. Mater Chem Phys, 2018, 214: 80 doi: 10.1016/j.matchemphys.2018.04.041
    [11] Ma S Q, Xing J D, He Y L, et al. Microstructure and crystallography of M7C3 carbide in chromium cast iron. Mater Chem Phys, 2015, 161: 65 doi: 10.1016/j.matchemphys.2015.05.008
    [12] Karantzalis A E, Lekatou A, Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J Mater Eng Perform, 2009, 18(2): 174 doi: 10.1007/s11665-008-9285-6
    [13] Wang J, Li C, Liu H H, et al. The precipitation and transformation of secondary carbides in a high chromium cast iron. Mater Charact, 2006, 56(1): 73 doi: 10.1016/j.matchar.2005.10.002
    [14] Liu H H, Wang J, Yang H S, et al. Effect of cryogenic treatment on property of 14Cr2Mo2V high chromium cast iron subjected to subcritical treatment. J Iron Steel Res, 2006, 13(6): 43 doi: 10.1016/S1006-706X(06)60108-8
    [15] Carpenter S D, Carpenter D, Pearce J T H. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Mater Chem Phys, 2007, 101(1): 49 doi: 10.1016/j.matchemphys.2006.02.013
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  102
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回