316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析

张志辉 李明

张志辉, 李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析[J]. 粉末冶金技术, 2022, 40(4): 351-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020080002
引用本文: 张志辉, 李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析[J]. 粉末冶金技术, 2022, 40(4): 351-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020080002
ZHANG Zhi-hui, LI Ming. Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel[J]. Powder Metallurgy Technology, 2022, 40(4): 351-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020080002
Citation: ZHANG Zhi-hui, LI Ming. Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel[J]. Powder Metallurgy Technology, 2022, 40(4): 351-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020080002

316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析

doi: 10.19591/j.cnki.cn11-1974/tf.2020080002
详细信息
    通讯作者:

    E-mail: fudi8235362@126.com

  • 中图分类号: TG174

Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel

More Information
  • 摘要: 经过液氮循环工艺获得了塑韧性更优的Fe基粉末,通过超音速火焰喷涂(high velocity oxy-fuel,HVOF)法对建筑用316L钢基体表面造成高速撞击生成Fe基粉末涂层,分析涂层摩擦学特性与液氮循环工艺间的关系。研究结果表明:液氮循环处理粉末和未处理原始粉末都属于非晶态,粉末外观形貌都属于椭球形,没有开裂或破碎。在液氮循环处理粉末涂层组织中只存在少量的未铺展颗粒,孔隙率也发生了明显减小,形成了更致密组织。采用液氮循环方法来改善粉末塑性,使粉末以更好的铺展状态完成沉积过程。经过液氮循环处理的粉末涂层可以获得更稳定的摩擦学性能,形成了更致密的组织,孔隙与裂纹数量明显降低,摩擦系数明显减小,主要发生氧化磨损,表现出更低的磨痕深度与磨损率误差。
  • 图  1  液氮循环处理工艺流程

    Figure  1.  Process flow of the liquid nitrogen cycle treatment

    图  2  液氮循环处理前后Fe基粉末显微形貌:(a)液氮循环处理前;(b)液氮循环处理后

    Figure  2.  SEM images of the Fe-based powders before and after the liquid nitrogen cycling treatment: (a) before the liquid nitrogen cycle treatment; (b) after liquid nitrogen cycling treatment

    图  3  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的X射线衍射谱图

    Figure  3.  XRD patterns of the Fe-based powder coatings prepared by HVOF before and after the liquid nitrogen cycling treatment

    图  4  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的表面和截面显微形貌:(a)液氮循环处理前涂层表面;(b)液氮循环处理前涂层截面;(c)液氮循环处理后涂层表面;(d)液氮循环处理后涂层截面

    Figure  4.  SEM images of the Fe-based powder coating surface and cross section prepared by HVOF before and after the liquid nitrogen cycling treatment: (a) coating surface before the liquid nitrogen cycling treatment; (b) coating cross section before the liquid nitrogen cycling treatment; (c) coating surface after the liquid nitrogen cycling treatment; (d) coating cross section after the liquid nitrogen cycling treatment

    图  5  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的摩擦系数分布

    Figure  5.  Friction coefficient distribution of the Fe-based powder coatings prepared by HVOF before and after the liquid nitrogen cycling treatment

    图  6  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的磨痕形貌:(a)液氮循环处理前;(b)液氮循环处理后

    Figure  6.  Wear trace images of the Fe-based powder coatings prepared by HVOF before and after the liquid nitrogen cycling treatment: (a) before the liquid nitrogen cycle treatment; (b) after the liquid nitrogen cycling treatment

    图  7  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的磨痕及对应的磨屑显微形貌:(a)液氮循环处理前磨痕;(b)液氮循环处理前磨屑;(c)液氮循环处理后磨痕;(d)液氮循环处理后磨屑

    Figure  7.  Wear marks and the corresponding abrasive debris of the Fe-based powder coatings prepared by HVOF before and after the liquid nitrogen cycling treatment: (a) wear marks before the liquid nitrogen cycling treatment; (b) abrasive debris before the liquid nitrogen cycling treatment; (c) wear marks after the liquid nitrogen cycling treatment; (d) abrasive debris after the liquid nitrogen cycling treatment

    表  1  超音速火焰喷涂工艺参数

    Table  1.   Technological parameters of the high velocity oxy-fuel

    O2气流量 / (m3·h‒1)Ac气流量 / (m3·h‒1)N2气流量 / (m3·h‒1)喷涂频率 / Hz喷涂距离 / mm
    0.500.230.053.9140
    下载: 导出CSV

    表  2  液氮循环处理前后Fe基粉末超音速火焰喷涂制备涂层的磨损参数

    Table  2.   Wear parameters of the Fe-based powder coatings prepared by HVOF before and after the liquid nitrogen cycling treatment

    液氮循环摩擦系数磨损率 / (10‒6mm3·N‒1m‒1)宽度 / mm深度 / μm
    处理前0.6566.854.835.16
    处理后0.5836.324.124.63
    下载: 导出CSV
  • [1] Huang Y, Ding Z X, Yu Z K, et al. Research on slurry erosion resistance of micro-nano WC‒10Co4Cr coatings in NaCl solution. Therm Spray Technol, 2019, 11(4): 16 doi: 10.3969/j.issn.1674-7127.2019.04.003

    黄炎, 丁彰雄, 喻仲昆, 等. 微纳米WC‒10Co4Cr涂层在NaCl介质中的抗泥沙冲蚀性能研究. 热喷涂技术, 2019, 11(4): 16 doi: 10.3969/j.issn.1674-7127.2019.04.003
    [2] Henao J, Concustell A, Dosta S, et al. Influence of the substrate on the formation of metallic glass coatings by cold gas spraying. J Therm Spray Technol, 2016, 25(5): 992 doi: 10.1007/s11666-016-0419-3
    [3] Yang E J, Li Y, Li W, et al. Effects of fuel type and spraying parameters on microstructure and mechanical properties of HVOF sprayed WC‒10Co4Cr coatings. China Surf Eng, 2019, 32(5): 136 doi: 10.11933/j.issn.1007-9289.20190405001

    杨二娟, 李勇, 李巍, 等. 燃料类型及喷涂参数对HVOF喷涂WC‒10Co4Cr涂层的组织及力学性能的影响. 中国表面工程, 2019, 32(5): 136 doi: 10.11933/j.issn.1007-9289.20190405001
    [4] Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015, 524(7564): 200 doi: 10.1038/nature14674
    [5] Liao Z, Hua N, Chen W, et al. Correlations between the wear resistance and properties of bulk metallic glasses. Intermetallics, 2018, 93: 290 doi: 10.1016/j.intermet.2017.10.008
    [6] Hu S S, Wang W B, Wang K, et al. Comparison of structure and properties between supersonic flame spraying WC‒17CO coating and electroplating hard Cr layer. China Sci Technol Inf, 2019(19): 76

    胡生双, 王文博, 王柯, 等. 超音速火焰喷涂WC‒17Co涂层与电镀硬Cr层结构及性能对比. 中国科技信息, 2019(19): 76
    [7] Cao Y, Zhang P L, Niu X M, et al. Research on thermal barrier and thermal shock resistance of NiCr‒mullite composite ceramic coating. Powder Metall Technol, 2021, 39(2): 135

    曹洋, 张鹏林, 牛显明, 等. 镍铬‒莫来石复合陶瓷涂层热障及热震性能的研究. 粉末冶金技术, 2021, 39(2): 135
    [8] Wang Y M, Min X B, Xiong X, et al. Study on the high-quality molybdenum target fabricated by low pressure plasma spraying. Powder Metall Technol, 2017, 35(4): 284

    王跃明, 闵小兵, 熊翔, 等. 高品质钼靶材低压等离子喷涂成形技术研究. 粉末冶金技术, 2017, 35(4): 284
    [9] Koga G Y, Schulz R, Savoie S, et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf Coat Technol, 2017, 309: 938 doi: 10.1016/j.surfcoat.2016.10.057
    [10] Liu M T, Zhong X C, Liu Z W, et al. Structure and properties of MoSi2‒CoNiCrAlY Nano-composite coating by plasma spraying. J Mater Eng, 2014(5): 17 doi: 10.11868/j.issn.1001-4381.2014.05.004

    刘名涛, 钟喜春, 刘仲武, 等. 等离子喷涂制备MoSi2‒CoNiCrAlY纳米复合涂层的结构与性能. 材料工程, 2014(5): 17 doi: 10.11868/j.issn.1001-4381.2014.05.004
    [11] Chu Z H, Wei F S, Zheng X W, et al. Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying. J Alloys Compd, 2019, 785: 206 doi: 10.1016/j.jallcom.2019.01.171
    [12] Liu Q N, Liu Y, Li F, et al. Effect of heat treatment on micro-structure and wear behaviors of iron-base amorphous alloy coatings. Mater Sci Eng Powder Metall, 2012, 17(5): 586 doi: 10.3969/j.issn.1673-0224.2012.05.007

    刘倩楠, 刘咏, 李飞, 等. 热处理对Fe基粉末涂层的相组成及摩擦磨损行为的影响. 粉末冶金材料科学与工程, 2012, 17(5): 586 doi: 10.3969/j.issn.1673-0224.2012.05.007
    [13] Jang B T, Kim S S, Yi S. Wear behaviors of a Fe-based amorphous alloy in ambient atmosphere and in distilled water. Met Mater Int, 2014, 20(1): 55 doi: 10.1007/s12540-014-1034-9
    [14] Gao H, Wei X S, Liang D D, et al. Friction and wear properties of HVAF sprayed Fe-based amorphous alloy coatings. Surf Technol, 2008, 47(2): 55

    高涵, 魏先顺, 梁丹丹, 等. 超音速火焰喷涂Fe基非晶合金涂层材料的摩擦磨损性能研究. 表面技术, 2008, 47(2): 55
    [15] Han J J, Gao Z, Lu Y, et al. Structure and corrosion resistant of Fe base amorphous coating by HVOF. Hot Working Technol, 2015, 44(14): 187

    韩建军, 高振, 鲁元, 等. 超音速火焰喷涂制备Fe基非晶涂层的组织结构及耐蚀性. 热加工工艺, 2015, 44(14): 187
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  96
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回