BaTiO3基正温度系数热敏陶瓷研究现状及应用

杨双娟 董桂霞 管若含 吴迪

杨双娟, 董桂霞, 管若含, 吴迪. BaTiO3基正温度系数热敏陶瓷研究现状及应用[J]. 粉末冶金技术, 2023, 41(2): 167-174, 186. doi: 10.19591/j.cnki.cn11-1974/tf.2020080010
引用本文: 杨双娟, 董桂霞, 管若含, 吴迪. BaTiO3基正温度系数热敏陶瓷研究现状及应用[J]. 粉末冶金技术, 2023, 41(2): 167-174, 186. doi: 10.19591/j.cnki.cn11-1974/tf.2020080010
YANG Shuangjuan, DONG Guixia, GUAN Ruohan, WU Di. Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 167-174, 186. doi: 10.19591/j.cnki.cn11-1974/tf.2020080010
Citation: YANG Shuangjuan, DONG Guixia, GUAN Ruohan, WU Di. Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 167-174, 186. doi: 10.19591/j.cnki.cn11-1974/tf.2020080010

BaTiO3基正温度系数热敏陶瓷研究现状及应用

doi: 10.19591/j.cnki.cn11-1974/tf.2020080010
详细信息
    通讯作者:

    E-mail: dgxdgx01@163.com

  • 中图分类号: V254.2; TB34

Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics

More Information
  • 摘要: 正温度系数(positive temperature coefficient,PTC)热敏陶瓷是一类关键电子功能陶瓷,因其优异的特性在加热元件、传感器、电路保护器、温度控制器、电器消磁等领域都有广泛的应用。BaTiO3作为主体材料制备的正温度系数热敏电阻(positive temperature coefficient thermistor,PTCR)是目前用量较大的一类正温度系数元件,具有重要的研究意义。本文阐述了正温度系数热敏材料的分类及其优缺点,介绍了正温度系数效应、热敏机理及BaTiO3基正温度系数材料的半导化原理,综述了BaTiO3基正温度系数热敏陶瓷国内外研究现状,分析了移峰剂、施主掺杂、受主掺杂、烧结工艺等因素对BaTiO3基正温度系数热敏陶瓷的影响,总结了正温度系数热敏元器件的应用原理及其在相关领域的应用,并对正温度系数热敏陶瓷的无铅化进行了展望。
  • 图  1  正温度系数热敏材料阻温特性图

    Figure  1.  Resistance temperature characteristic diagram of the PTC thermosensitive materials

    图  2  晶界表面势垒示意图:(a)居里温度以下;(b)居里温度以上

    Figure  2.  Schematic diagram of the grain boundary barrier: (a) lower than Curie temperature; (b) higher than Curie temperature

    图  3  添加不同摩尔分数Nb2O5、Y2O3、La2O3对正温度系数热敏陶瓷室温电阻率的影响

    Figure  3.  Effect of Nb2O5, Y2O3, and La2O3 molar fraction on the room temperature resistivity of the PTC thermosensitive ceramics

    图  4  添加不同摩尔分数Gd对正温度系数热敏陶瓷室温电阻率和升阻比的影响

    Figure  4.  Effect of Gd molar fraction on the room temperature resistivity and lift-to-resistance ratio of the PTC thermosensitive ceramics

    图  5  添加不同质量分数SiO2的正温度系数热敏陶瓷显微形貌:(a)0;(b)0.001;(c)0.005;(d)0.010;(e)0.020;(f)0.030

    Figure  5.  SEM images of the PTC thermal ceramics doping with SiO2 in different mass fraction: (a) 0; (b) 0.001; (c) 0.005; (d) 0.010; (e) 0.020; (f) 0.030

    图  6  降温速率对正温度系数热敏陶瓷电阻率和升阻比的影响

    Figure  6.  Effect of cooling rate on the resistivity and lift-to-resistance ratio of the PTC thermosensitive ceramics

    图  7  过流保护原理图:(a)典型负载回路;(b)电机过热保护

    Figure  7.  Schematic diagram of the overcurrent protection: (a) typical load loop; (b) motor overheating protection

    图  8  正温度系数消磁电路的电流时间曲线

    Figure  8.  Current time curve of PTC degaussing circuit

    表  1  正温度系数材料种类

    Table  1.   Types of the PTC materials

    类别产生正温度系数效应机理特点
    高分子类正温度系数复合材料20世纪80年代开发成功的新型功能材料。由绝缘聚合物基体混合炭黑、金属等导电粒子构成。在某一温度点基体材料由半导体(或导体)转变为绝缘体。这是由于基体材料随着温度的升高而膨胀,导电粒子失去联系,电阻率急剧提高。优点:容易加工成各种形状,电阻温度系数大,室温电导率大,升阻比大,可以消除负温度系数现象。缺点:居里点可改范围小,响应时间慢,耐高温性差,易老化失效。
    V2O3系正温度系数材料20世纪80年代发展起来的新型功能材料。随着温度升高,材料内部发生体效应(金属相→半导体或绝缘体),产生正温度系数效应。金属相的电阻率一般很低,绝缘体具有很高的电阻率,因此,lg(Rmax/Rmin)很大,具有一定升阻比。优点:电阻温度系数与升阻不受频率电压影响,室温电阻率低,耐电压性强,通流能力强。缺点:居里温度不易改变,升阻比小,相变时存在体积膨胀。
    钛酸钡基正温度系数材料由20世纪50年代荷兰Philips公司发现,在BaTiO3中掺入少量稀土元素,其室温电导率会大幅提高,在居里点电阻呈阶跃式上升(可增大5~8个数量级),具有正温度系数效应。这类材料正温度系数效应可用晶界效应来解释。优点:居里温度容易调整,电阻温度系数大,耐电压冲击能力强。缺点:室温电阻率较大,电阻温度系数、升阻比易受频率和电压影响。
    下载: 导出CSV

    表  2  BNT对正温度系数性能的影响

    Table  2.   Influence of BNT on the PTC performance

    BNT摩尔分数 / %ρ25 / (Ω·m)lg(∆β)TC / ℃
    668.202.19210.3
    8381.792.03225.7
    101055.771.69237.1
    153337.181.08242.8
    注:ρ25为室温电阻率,lg(∆β)为升阻比,TC为居里温度。
    下载: 导出CSV

    表  3  常见施主掺杂离子

    Table  3.   Common donor doped ions

    掺入位置掺杂离子
    Ba位La3+、Y3+、Nd3+、Sb3+、Bi3+
    Ti位Nb5+、Ta5+、Sb5+、V5+、W5+
    下载: 导出CSV

    表  4  CuO对正温度系数性能的影响

    Table  4.   Influence of CuO on the performance of PTC

    CuO摩尔分数 / %ρRT / (Ω·cm)ρmax / (Ω·cm)lg(ρmax/ρmin)TC / ℃c/a
    0871.463.95×1030.66134.21.0042
    0.052085.893.01×1052.16136.41.0056
    0.103104.221.40×1062.65137.31.0061
    0.1510055.063.91×1062.59138.61.0073
    0.20136114.299.76×1061.86139.71.0082
    注:ρRT为室温电阻率,ρmax为最大电阻率,ρmin为最小电阻率,lg(ρmaxmin)=lg(∆β)为升阻比,TC为居里温度,c/a为四方率。
    下载: 导出CSV
  • [1] Wu W F. Study on Preparation and Application of the PTC Materials with Room Temperature Curie Point [Dissertation]. Hefei: University of Science and Technology of China, 2013

    吴万范. 室温居里点PTC材料的制备及应用研究[学位论文]. 合肥: 中国科学技术大学, 2013
    [2] Song J L. Study on PTC Thermal Control Material at Room Temperature and Its ThermaI ControI Method [Dissertation]. Hefei: University of Science and Technology of China, 2016

    宋嘉梁. 常温PTC热控材料及其热控方法研究[学位论文]. 合肥: 中国科学技术大学, 2016
    [3] Liu H G. Study on PTCR Thermistor for High Voltage Overcurrent Protection [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2012

    刘宏刚. 高耐压过流保护用PTCR热敏电阻器的研究[学位论文]. 成都: 电子科技大学, 2012
    [4] Zhai J, Li L Y, Ouyang Y F. First-principle study of thermophysical properties of perovskite BaTiO3. J Guangxi Normal Univ Nation, 2012, 29(3): 39 doi: 10.3969/j.issn.1674-8891.2012.03.013

    翟娟, 李兰英, 欧阳义芳. 钙钛矿结构BaTiO3的热物理性能的第一原理研究. 广西民族师范学院学报, 2012, 29(3): 39 doi: 10.3969/j.issn.1674-8891.2012.03.013
    [5] Ren Y J. Study on Preparation and Properties of BaTiO3 PTC Heat Sensitive Ceramics [Dissertation]. Taiyuan: Taiyuan University of Technology, 2006

    任伊锦. 钛酸钡系PTC热敏陶瓷材料的制备与性能研究[学位论文]. 太原: 太原理工大学, 2006
    [6] Xi B F, Liu F Y, Xu C X, et al. The advance in theory research of PTC properties of polymer/carbon black composites. Polym Mater Sci Eng, 1999, 15(6): 25 doi: 10.16865/j.cnki.1000-7555.1999.06.007

    席保锋, 刘辅宜, 徐传骧, 等. 聚合物/炭黑复合材料PTC特性的理论研究进展. 高分子材料科学与工程, 1999, 15(6): 25 doi: 10.16865/j.cnki.1000-7555.1999.06.007
    [7] Xu Q, Chen W, Zhou J, et al. Study and improvement of doped V2O3 PTC ceramics. Adv Ceram, 1997, 18(2): 26

    徐庆, 陈文, 周静, 等. 掺杂V2O3系PTC陶瓷的研究现状及进展. 现代陶瓷技术, 1997, 18(2): 26
    [8] Heywang W. Barium titanate as a semiconductor with blocking layers. Solid State Electron, 1961, 3(1): 51 doi: 10.1016/0038-1101(61)90080-6
    [9] Liang Y H, Wang J F, Pu Y P, et al. Effect of atmosphere sintering on lead-free PTCR ceramics. China Ceram, 2009, 45(7): 23

    梁云鹤, 王瑾菲, 蒲永平, 等. 含铋BaTiO3基PTC陶瓷半导化研究. 中国陶瓷, 2009, 45(7): 23
    [10] Jiang S L, Gong S P, Zhou L, et al. Study on semiconductor ceramic materials: Double donor doping BaTiO3. Piezoelectr Acoust, 2000, 22(6): 392 doi: 10.3969/j.issn.1004-2474.2000.06.013

    姜胜林, 龚树萍, 周莉, 等. 双施主掺杂BaTiO3半导体陶瓷材料的研究. 压电与声光, 2000, 22(6): 392 doi: 10.3969/j.issn.1004-2474.2000.06.013
    [11] Li T, Chang F G, Ge Y X, et al. PAT studies of donor-doped BaTiO3 ceramics. J Henan Normal Univ Nat Sci, 2006, 34(1): 43

    李涛, 常方高, 葛永霞, 等. Ho掺杂BaTiO3陶瓷的制备及其正电子湮没研究. 河南师范大学学报(自然科学版), 2006, 34(1): 43
    [12] Hu Y, Chen Y Y, Su W Y, et al. Study on PTCR material of high Curie point and low resistivity. Electron Compon Mater, 2006, 6(6): 61 doi: 10.3969/j.issn.1001-2028.2006.06.020

    胡毅, 陈亿裕, 苏卫彦, 等. 低电阻率高居里点PTCR材料的研究. 电子元件与材料, 2006, 6(6): 61 doi: 10.3969/j.issn.1001-2028.2006.06.020
    [13] Kang J N. Study on the Lead-Free High Curie Temperature BaTiO3 Based Materials [Dissertation]. Tianjin: Tianjin University, 2010

    康健宁. 无铅高居里点BaTiO3基PTC材料的研究[学位论文]. 天津: 天津大学, 2010
    [14] Liu M L. Study on the Preparation of BaTiO3-Based Lead-Free High Curie-Point Positive Temperature Coefficient Ceramics [Dissertation]. Tianjin: Tianjin University, 2010

    刘明龙. BaTiO3基无铅高居里温度PTCR材料的制备研究[学位论文]. 天津: 天津大学, 2010
    [15] Mächler D, Töpfer J. Effect of SiO2 sintering additive on the positive temperature coefficient of resistivity (PTCR) behavior of (Bi1/2Na1/2)0.10Ba0.90TiO3+CaO ceramics. Mater Res Bull, 2017, 89: 217 doi: 10.1016/j.materresbull.2017.02.005
    [16] Kola L, Swain A B, Rath M, et al. Impedance characteristics and PTCR effect in lead free BaTi1‒xSnxO3 piezoceramics. Mater Res Bull, 2018, 106: 371 doi: 10.1016/j.materresbull.2018.06.021
    [17] Matsuura K, Hoshina T, Takeda H, et al. Effects of Ca substitution on room temperature resistivity of donor-doped barium titanate based PTCR ceramics. J Ceram Soc Jpn, 2014, 122(1426): 402 doi: 10.2109/jcersj2.122.402
    [18] Lei J. Study of the NTC Effect in Barium Titanate Based PTC Ceramics [Dissertation]. Guangzhou: South China University of Technology, 2018

    雷佳. 钛酸钡基PTC陶瓷NTC效应研究[学位论文]. 广州: 华南理工大学, 2018
    [19] Guo C. Effect of Donor and Na0.5Bi0.5TiO3 (NBT) Dopants on Element’ s Curie Temperature of PTCR [Dissertation]. Xi′an: Xidian University, 2014

    郭晨. 施主掺杂和Na0.5Bi0.5TiO3对钛酸钡系PTCR居里温度的影响[学位论文]. 西安: 西安电子科技大学, 2014
    [20] Wang X, Liu S J, Zhang L X, et al. Influence of sintering time and donor concentration on the PTCR effect of La-doped BaTiO3-Na0.5Bi0.5TiO3 ceramics. Ceram Int, 2018, 44(Suppl 1): S216
    [21] Takeuchi N, Fujishita Y, Kobayashi H. Fabrication of high Curie-point PTCR materials using Gd-doped BaTiO3-(Bi1/2Na1/2)TiO3 system. J Soc Mater Sci Jpn, 2018, 67(4): 474 doi: 10.2472/jsms.67.474
    [22] Cheng X X, Cui H N, Li X X, et al. Investigation of PTCR effect and microdefects in Nb2O5-doped BaTiO3-based ceramics by positron annihilation techniques. Int J Mod Phys B, 2017, 31: 1744060 doi: 10.1142/S021797921744060X
    [23] Teichmann C, Töpfer J. Low-temperature sintering of BaTiO3 positive temperature coefficient of resistivity (PTCR) ceramics. J Mater Sci Mater Electron, 2018, 29: 17881 doi: 10.1007/s10854-018-9903-5
    [24] Mächler D, Schmidt R, Töpfer J, et al. Synthesis, doping and electrical bulk response of (Bi1/2Na1/2)xBa1‒xTiO3+CaO-based ceramics with positive temperature coefficient of resistivity (PTCR). J Alloys Compd, 2018, 762: 209 doi: 10.1016/j.jallcom.2018.05.049
    [25] Zhao J J, Pu Y P, Wu Y R, et al. PTCR behavior of CuO-doped Ba0.96(Bi0. 5K0.5)0.04TiO3 ceramics. Ferroelectrics, 2016, 492(1): 117 doi: 10.1080/00150193.2015.1071145
    [26] Zhao J J, Pu Y P, Wu Y R, et al. Influence of SiO2 addition on the PTCR characteristics of Ba0.92(Bi0.5K0.5)0.08TiO3 ceramics. J Mater Sci Mater Electron, 2015, 26(8): 6051 doi: 10.1007/s10854-015-3182-1
    [27] Liu J Q, Gong S P, Quan L, et al. Effects of SiO2 addition on Ba excessive barium titanate ceramics sintered in reducing atmosphere for laminated PTCR thermistors. Mater Res Innovations, 2014, 18(Suppl 2): 172
    [28] Cheng X X, Li X X, Chen X M, et al. Influence of sintering process on electrical properties and PTCR effect of laminated Ba1.005(Ti1‒xNbx)O3 ceramics fired in a reducing atmosphere. Int J Mod Phys B, 2017, 31: 1744061 doi: 10.1142/S0217979217440611
    [29] Cheng X, Zhou D, Fu Q, et al. Influence of the sintering process on the PTCR effect of chip-type Ba1.022–xSmxTiO3 ceramics prepared by the reduction sintering-reoxidation method. J Mater Sci Mater Electron, 2014, 25(2): 1105 doi: 10.1007/s10854-013-1695-z
    [30] Zhang H L. Preparation and Research of Positive Temperature Coefficient Thermosensitive Material [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2019

    张宏亮. 正温度系数热敏材料的制备与研究[学位论文]. 南京: 南京理工大学, 2019
    [31] Ding S W, Pan B, Chuo Y M, et al. Influence of sintering process on the properties of BaTiO3-based PTCR ceramics. J Hebei Univ Nat Sci, 2011, 31(5): 486

    丁士文, 潘彬, 啜艳明, 等. 烧结工艺对BaTiO3基PTC热敏电阻材料性能的影响. 河北大学学报(自然科学版), 2011, 31(5): 486
    [32] Cheng X, Chen X, Li X, et al. Influence of Ba/Ti ratio on PTCR effect of Bam(Ti1‒xNbx)O3 ceramics prepared by the reduction sintering-reoxidation method. Mod Phy Lett B, 2019, 32: 1840071
    [33] Huang H, Chen Y, Li Z, et al. The influences of controlling sintering mechanism on electrical properties of multilayer PTCR chip. J Wuhan Univ Technol Mater Sci, 2015, 30(4): 674 doi: 10.1007/s11595-015-1210-x
    [34] Cao M H, Yuan J, Gong S P, et al. The abnormal effect of cooling rate on the room temperature resistivity of Ba0.92Ca0.08TiO3 PTCR ceramics. J Chin Ceram Soc, 2003, 31(6): 604 doi: 10.3321/j.issn:0454-5648.2003.06.016

    曹明贺, 袁俊, 龚树萍, 等. 降温速率对Ba0.92Ca0.08TiO3 PTCR陶瓷室温电阻率反常现象的影响. 硅酸盐学报, 2003, 31(6): 604 doi: 10.3321/j.issn:0454-5648.2003.06.016
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  770
  • HTML全文浏览量:  230
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回