C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响

万霖 张继峰 孙露 邱天旭 申小平

万霖, 张继峰, 孙露, 邱天旭, 申小平. C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响[J]. 粉末冶金技术, 2023, 41(6): 508-515. doi: 10.19591/j.cnki.cn11-1974/tf.2020090001
引用本文: 万霖, 张继峰, 孙露, 邱天旭, 申小平. C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响[J]. 粉末冶金技术, 2023, 41(6): 508-515. doi: 10.19591/j.cnki.cn11-1974/tf.2020090001
WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. doi: 10.19591/j.cnki.cn11-1974/tf.2020090001
Citation: WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. doi: 10.19591/j.cnki.cn11-1974/tf.2020090001

C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020090001
基金项目: 国家自然科学基金资助项目(50971057,51371099)
详细信息
    通讯作者:

    E-mail: xpshen171@163.com

  • 中图分类号: TG146.1; TF125

Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys

More Information
  • 摘要: 通过改变粉末锻造Fe–Cu–C–Cr合金中C、Cr的质量分数,研究C、Cr含量对合金组织和物理性能的影响。结果表明:在不添加Cr的情况下,合金的组织主要为铁素体和渗碳体,合金硬度和抗拉强度随C含量的增加小幅增加,C含量对合金最终摩擦系数的影响不大;添加Cr元素后,合金密度降低,组织也较为复杂,合金硬度随Cr含量的增加而增加,最高可达HRA 68.6。C和Cr共同影响合金高温抗拉强度,Fe–2Cu–0.5C–5Cr抗拉强度最高,为378 MPa。合金摩擦系数随Cr含量的增加而减小,当Cr质量分数为10%时,合金最终摩擦系数为0.195,磨损方式为氧化磨损和少量的磨粒磨损。
  • 图  1  拉伸试样尺寸示意图

    Figure  1.  Size diagram of the tensile samples

    图  2  含有不同质量分数Cr的Fe–2Cu–0.2C–yCr孔隙分布:(a)y=0;(b)y=5;(c)y=10

    Figure  2.  Pore distribution of the Fe–2Cu–0.2C–yCr with the different mass fraction of Cr: (a) y=0; (b) y=5; (c) y=10

    图  3  Fe–2Cu–xC粉末锻造合金微观组织:(a)x=0.2;(b)x=0.5;(c)x=0.8

    Figure  3.  Microstructures of the Fe–2Cu–xC powder forged alloys: (a) x=0.2; (b) x=0.5; (c) x=0.8

    图  4  Fe–2Cu–0.8C–yCr粉末锻造合金微观组织:(a)y=0;(b)y=5;(c)y=10;(d)y=10(王水腐蚀)

    Figure  4.  Microstructures of the Fe–2Cu–0.8C–yCr powder forged alloys: (a) y=0; (b) y=5; (c) y=10; (d) y=10 corroded by aqua regia

    图  5  Fe–2Cu–xC–5Cr粉末锻造合金显微组织:(a)x=0.2;(b)x=0.5;(c)x=0.8

    Figure  5.  Microstructures of the Fe–2Cu–xC–5Cr powder forged alloys: (a) x=0.2; (b) x=0.5; (c) x=0.8

    图  6  Fe–2Cu–xC–yCr(x=0.2、0.5、0.8,y=0、5、10)粉末锻造合金表观硬度

    Figure  6.  Hardness of the Fe–2Cu–xC–yCr (x=0.2, 0.5, 0.8, y=0, 5, 10) powder forged alloys

    图  7  Fe–2Cu–0.2C–yCr(y=0、5、10)粉末锻造合金的X射线衍射图谱

    Figure  7.  XRD patterns of the Fe–2Cu–0.2C–yCr (y=0、5、10) powder forged alloys

    图  8  Fe–2Cu–xC–yCr(x=0.2、0.5、0.8;y=0、5、10)粉末锻造合金高温抗拉强度(a)和延伸率(b)

    Figure  8.  High temperature tensile strength (a) and elongation (b) of the Fe–2Cu–xC–yCr (x=0.2, 0.5, 0.8; y=0, 5, 10) powder forged alloys

    图  9  Fe–2Cu–0.2C–yCr粉末锻造合金断口形貌:(a)y=0;(b)y=5;(c)y=10

    Figure  9.  Fracture morphology of the Fe–2Cu–0.2C–yCr powder forged alloys: (a) y=0; (b) y=5; (c) y=10

    图  10  粉末锻造合金摩擦系数随时间和温度变化曲线:(a)Fe–2Cu–xC(x=0.2、0.5、0.8);(b)Fe–2Cu–xC–5Cr(x=0.2、0.5、0.8);(c)Fe–2Cu–0.5C–yCr(y=0、5、10)

    Figure  10.  Friction coefficient of the powder forged alloys with the different time and temperature: (a) Fe–2Cu–xC (x=0.2, 0.5, 0.8); (b) Fe–2Cu–xC–5Cr (x=0.2, 0.5, 0.8); (c) Fe–2Cu–0.5C–yCr (y=0, 5, 10)

    图  11  Fe–2Cu–0.5C–yCr摩擦表面的扫描电子显微形貌及能谱元素面分布:(a)y=0;(b)y=5;(c)y=10

    Figure  11.  Friction surface SEM images and EDS analysis of Fe–2Cu–0.5C–yCr: (a) y=0; (b) y=5; (c) y=10

    表  1  粉末锻造合金相对密度

    Table  1.   Relative density of the powder forged alloys %

    C质量分数 / %Cr质量分数 / %
    0510
    0.299.697.896.9
    0.599.597.696.4
    0.899.197.195.9
    下载: 导出CSV
  • [1] Cheng L, Xiao Z Y, He J, et al. Effect of the method of chromium addition and its content on microstructure and mechanical properties of powder metallurgy sintering steel. Mater Sci Eng Powder Metall, 2015, 20(3): 406

    陈露, 肖志瑜, 何杰, 等. Cr的添加方式与含量对粉末冶金烧结钢组织及力学性能的影响. 粉末冶金材料科学与工程, 2015, 20(3): 406
    [2] Wen X R, Qin J H, Wei C X, et al. Friction properties of Fe–Cu–C oil-bearing. Powder Metall Ind, 2019, 29(4): 63

    文鑫荣, 覃俊华, 韦长兴, 等. Fe–Cu–C含油轴承的摩擦性能研究. 粉末冶金工业, 2019, 29(4): 63
    [3] Peng Y D, Wu H M, Yi J H, et al. Influence of carbon content on the properties of Fe–Cu–C alloy. Met Mater Metall Eng, 2007, 35(6): 15

    彭元东, 吴海明, 易健宏, 等. C含量对Fe–Cu–C合金性能的影响. 金属材料与冶金工程, 2007, 35(6): 15
    [4] Wang S, Wang Q, Wang H L, et al. Effects of copper content on microstructure and mechanical properties of powder-forged rod Fe–C–Cu alloys manufactured at elevated temperature. Mater Sci Eng A, 2019, 743: 197 doi: 10.1016/j.msea.2018.11.082
    [5] Li A, Ding Z K, Hu Y, et al. Effect of ultra-fine Fe–N powder addition on microstructure and mechanical properties of Fe–C–Cu alloy. Heat Treat Met, 2016, 41(11): 193

    李爱, 丁宗凯, 胡洋, 等. 微细Fe–N粉的添加对Fe–C–Cu合金结构和力学性能的影响. 金属热处理, 2016, 41(11): 193
    [6] Huang Y Q, Shen X P, Pan S Y, et al. Numerical simulation of powder hot forging cam. Powder Metall Ind, 2016, 26(2): 50 doi: 10.13228/j.boyuan.issn1006-6543.20150110

    黄永强, 申小平, 潘诗琰, 等. 粉末热锻凸轮的数值模拟. 粉末冶金工业, 2016, 26(2): 50 doi: 10.13228/j.boyuan.issn1006-6543.20150110
    [7] Yang S, Xiao Z Y, Guan H J, et al. Microstructure and mechanical properties of sintered and forged Fe–2Cu–0.5C–0.11S. Powder Metall Technol, 2017, 35(1): 23

    杨硕, 肖志瑜, 关航健, 等. 烧结和锻造态Fe–2Cu–0.5C–0.11S材料的组织与力学性能研究. 粉末冶金技术, 2017, 35(1): 23
    [8] Wang Q, Zhang B Q, Wang S, et al. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials. Powder Metall Technol, 2021, 39(1): 33 doi: 10.19591/j.cnki.cn11-1974/tf.2019110004

    王琪, 张冰清, 王邃, 等. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究. 粉末冶金技术, 2021, 39(1): 33 doi: 10.19591/j.cnki.cn11-1974/tf.2019110004
    [9] Sun L, Zhang J F, Qiu T X, et al. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum. Powder Metall Technol, 2020, 38(3): 174 doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002

    孙露, 张继峰, 邱天旭, 等. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响. 粉末冶金技术, 2020, 38(3): 174 doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [10] Zhang B Q, Wang Q, Wang S, et al. Study on the microstructure and properties of powder-forged gear materials. Powder Metall Technol, 2020, 38(2): 113 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.005

    张冰清, 王琪, 王邃, 等. 粉末锻造齿轮材料的组织与性能研究. 粉末冶金技术, 2020, 38(2): 113 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [11] Wang Q, Yao P P, Zhou H B, et al. Wear map of Cu-based powder metallurgy friction materials using Cr as a friction component. Tribology, 2017, 37(3): 364 doi: 10.16078/j.tribology.2017.03.012

    王奇, 姚萍屏, 周海滨, 等. 含Cr铜基粉末冶金摩擦材料的磨损图研究. 摩擦学学报, 2017, 37(3): 364 doi: 10.16078/j.tribology.2017.03.012
    [12] Cheng L. Preparation, Microstructure and Property of Chromium Containing Ferrous Powder Metallurgical Structural Materials [Dissertation]. Hefei: Hefei University of Technology, 2018

    程璐. 含Cr铁基粉末冶金结构零件材料的制备及组织性能研究[学位论文]. 合肥: 合肥工业大学, 2018
    [13] Wang C L. On the measurement of density for P/M Materials. Powder Metall Ind, 2010, 20(6): 1 doi: 10.13228/j.boyuan.issn1006-6543.2010.06.008

    王崇琳. 论粉末冶金材料的密度测定. 粉末冶金工业, 2010, 20(6): 1 doi: 10.13228/j.boyuan.issn1006-6543.2010.06.008
    [14] Gonzalez B M, Castro C S B, Buono V T L, et al. The influence of copper addition on the formability of AISI 304 stainless steel. Mater Sci Eng A, 2003, 343(1-2): 51 doi: 10.1016/S0921-5093(02)00362-3
    [15] Wang C D, Cao S H. Investigation of high-chromium iron-based sintered materials. Powder Metall Technol, 1998, 16(2): 116 doi: 10.19591/j.cnki.cn11-1974/tf.1998.02.008

    王才德, 曹顺华. 高铬铁基烧结材料的研究. 粉末冶金技术, 1998, 16(2): 116 doi: 10.19591/j.cnki.cn11-1974/tf.1998.02.008
    [16] Shi W N, Yang S F, Li J S. Correlation between Cr-depleted zone and local corrosion in stainless steel: a review. J Chin Soc Corros Prot, 2019, 39(4): 281 doi: 10.11902/1005.4537.2018.145

    史伟宁, 杨树峰, 李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展. 中国腐蚀与防护学报, 2019, 39(4): 281 doi: 10.11902/1005.4537.2018.145
    [17] Li L. Effects of Temperature on Friction Coefficient and Wear of Wheel/Rail Friction [Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2015

    李龙. 温度对轮轨摩擦副摩擦系数和磨损的影响研究[学位论文]. 兰州: 兰州交通大学, 2015
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  44
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回