MOFs衍生TMO/C在锂离子电池负极材料的应用

管若含 董桂霞 杨双娟

管若含, 董桂霞, 杨双娟. MOFs衍生TMO/C在锂离子电池负极材料的应用[J]. 粉末冶金技术, 2023, 41(4): 363-371. doi: 10.19591/j.cnki.cn11-1974/tf.2020090002
引用本文: 管若含, 董桂霞, 杨双娟. MOFs衍生TMO/C在锂离子电池负极材料的应用[J]. 粉末冶金技术, 2023, 41(4): 363-371. doi: 10.19591/j.cnki.cn11-1974/tf.2020090002
GUAN Ruohan, DONG Guixia, YANG Shuangjuan. Application of MOFs-derived TMO/C in anode materials forlithium-ion batteries[J]. Powder Metallurgy Technology, 2023, 41(4): 363-371. doi: 10.19591/j.cnki.cn11-1974/tf.2020090002
Citation: GUAN Ruohan, DONG Guixia, YANG Shuangjuan. Application of MOFs-derived TMO/C in anode materials forlithium-ion batteries[J]. Powder Metallurgy Technology, 2023, 41(4): 363-371. doi: 10.19591/j.cnki.cn11-1974/tf.2020090002

MOFs衍生TMO/C在锂离子电池负极材料的应用

doi: 10.19591/j.cnki.cn11-1974/tf.2020090002
详细信息
    通讯作者:

    E-mail: dongguixia199@163.com

  • 中图分类号: TM912.9

Application of MOFs-derived TMO/C in anode materials forlithium-ion batteries

More Information
  • 摘要: 锂离子电池商用负极材料石墨比容量低,难以满足市场需求,金属有机骨架材料(metal-organic framework materials,MOFs)具有可调控的结构、较大的表面积和可调节的孔径,可用作下一代电化学储能器件,引起广泛研究。本文综述了金属(Fe、Co、Zn、Mn、Cu)基金属有机骨架及其衍生物的合成,重点介绍了以金属有机骨架材料为前驱体制备过渡金属氧化物(transition metal oxide,TMO)/C作为锂离子电池负极材料的研究进展,并对其发展方向进行了展望。
  • 图  1  前驱体GO/ZIF-67(a)和G/Co3O4复合材料(b)显微形貌、G/Co3O4和Co3O4电极在100 mA·g−1电流密度下前三圈放电/充电曲线(c)以及在200 mA·g−1的循环图(d)[17]

    Figure  1.  Microstructures of GO/ZIF-67 precursor (a) and G/Co3O4 (b), the discharge/charge curves of G/Co3O4 and Co3O4 at the current density of 100 mA·g−1 for the first three cycles (c), and the cycling properties of G/Co3O4 and Co3O4 at 200 mA·g−1 (d)[17]

    图  2  C-Fe3O4显微结构((a)和(b))、在电流密度为100 mA·g−1时C-Fe3O4充放电曲线(c)以及在100 mA·g−1电流密度下C-Fe3O4循环性能(d)[18]

    Figure  2.  Microstructures of C-Fe3O4 ((a) and (b)), the discharge/charge curves of C-Fe3O4 at the current density of 100 mA·g−1 (c), and the cycling properties of C-Fe3O4 at 100 mA·g−1 (d)[18]

    图  3  空心多孔ZnO/C制备工艺流程(a)、空心多孔ZnO/C显微形貌(b)以及在电流密度为100 mA·g−1时空心多孔ZnO/C、空心多孔ZnO和商用ZnO的循环性能(c)[20]

    Figure  3.  Schematic diagram of hollow porous ZnO/C preparation process (a), microstructure of hollow porous ZnO/C (b), and cycling properties of hollow porous ZnO/C, hollow porous ZnO, and commercial ZnO at 100 mA·g−1 (c)[20]

    图  4  不同电流密度下材料循环性能和库仑效率:(a)电流密度300 mA·g−1,MnO/C−N[27];(b)电流密度100 mA·g−1,MnO/C@rGO[29]

    Figure  4.  Cycling properties and Coulomb efficiency at different electric current density: (a) MnO/C−N at 300 mA·g−1[27]; (b) MnO/C@rGO at 100 mA·g−1[29]

    图  6  CuO/C立方体((a)和(b))[33]和多孔空心CuO/C复合材料((c)和(d))[34]显微形貌

    Figure  6.  Microstructures of the CuO/C cube ((a) and (b))[33] and the porous hollow CuO/C composite materials ((c) and (d))[34]

    图  7  Co3O4@Co3V2O8显微形貌[37]

    Figure  7.  Microstructures of Co3O4@Co3V2O8[37]

    表  1  MOFs衍生锂离子电池负极材料

    Table  1.   MOFs-derived anode materials for lithium-ion batteries

    MOFs前驱体 产物 电流密度 / (mA·g−1) 可逆容量 / (mA·h·g−1) 循环次数 参考文献
    Co-MOF Co3O4/C 200 1052 60 [15]
    Co-MOF Co3O4/C 1000 601.0 500 [16]
    ZIF-67 G/Co3O4 200 714.0 200 [17]
    Fe-MOF C-Fe3O4 100 975.0 50 [18]
    Fe-ZIF Fe2O3@N-C 100 861.0 100 [19]
    MOF-5 ZnO/C 100 750.0 100 [20]
    Ppy-ZIF-8 ZnO/C 250 526.0 500 [21]
    Zn-BTC ZnO/C 100 919.0 100 [22]
    ZnO@ZIF-8 ZnO/C 2000 351.0 [23]
    MOF-5 ZnO@C/CNT 100 758.0 100 [24]
    Mn-BTC MnO@C 3825 596.3 1000 [26]
    Mn-PBI MnO/C−N 300 1085.0 100 [27]
    Mn-BDC MnO/C@rGO 100 1536.4 100 [29]
    Cu-MOF CuOx-rGO 200 1490.0 220 [31]
    Cu-BTC CuO@C 100 1024.0 100 [32]
    [Cu(BTC)2]n-MOF CuO/C 100 510.5 200 [33]
    Cu-MOF CuO/C 100 789.0 200 [34]
    Cu-MOF CuO@C 1000 410.0 1000 [35]
    MIL-125@ZIF-67 Co3O4/TiO2 1000 838.6 600 [36]
    ZIF-67 Co3O4@Co3V2O8 100 948.0 100 [37]
    ZIF-67 Co3O4@TiO2 100 1057.0 100 [38]
    MOF-74-FeCo Co3O4-CoFe2O4 100 940.0 80 [39]
    ZnCo-MOF ZnO/ZnCo2O4/C 500 669.0 250 [40]
    GO/Zn-Co-ZIF/Ni rGO/ZnCo2O4-ZnO-C/Ni 100 1184.4 150 [42]
    下载: 导出CSV
  • [1] Xu G, Nie P, Dou H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today, 2017, 20(4): 191 doi: 10.1016/j.mattod.2016.10.003
    [2] Yu S H, Lee S H, Lee D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small, 2016, 12(16): 2146 doi: 10.1002/smll.201502299
    [3] Kim T, Song W T, Son D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A, 2019, 7(7): 2942 doi: 10.1039/C8TA10513H
    [4] Zhao R, Liang Z B, Zou R Q, et al. Metal-organic frameworks for batteries. Joule, 2018, 2(11): 2235 doi: 10.1016/j.joule.2018.09.019
    [5] Xie X C, Huang K J, Wu X. Metal-organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A, 2018, 6(16): 6754 doi: 10.1039/C8TA00612A
    [6] Cook T R, Zheng Y R, Stang P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev, 2013, 113(1): 734 doi: 10.1021/cr3002824
    [7] Mehta J, Bhardwaj N, Bhardwaj S K, et al. Recent advances in enzyme immobilization techniques metal-organic frameworks as novel substrates. Coord Chem Rev, 2016, 322: 30 doi: 10.1016/j.ccr.2016.05.007
    [8] Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117: 10401 doi: 10.1021/ja00146a033
    [9] Li B, Wen H, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater, 2016, 28(40): 8819 doi: 10.1002/adma.201601133
    [10] Li T, Bai Y L, Wang Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev, 2020, 410: 213
    [11] Xia W, Mahmood A, Zou R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci, 2015, 8(7): 1837 doi: 10.1039/C5EE00762C
    [12] Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano, 2016, 10(1): 377 doi: 10.1021/acsnano.5b05041
    [13] Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci, 2018, 5(3): 1700592 doi: 10.1002/advs.201700592
    [14] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater, 2019, 31(11): 1804903.1
    [15] Tian D, Zhou X L, Zhang Y H, et al. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg Chem, 2015, 54(17): 8159 doi: 10.1021/acs.inorgchem.5b00544
    [16] Ding Y C, Hu L H, He D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J, 2020, 380: 122489 doi: 10.1016/j.cej.2019.122489
    [17] Qu Q, Gao T, Zheng H, et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon, 2015, 92: 119 doi: 10.1016/j.carbon.2015.03.061
    [18] Li M, Wang W, Yang M, et al. Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Adv, 2015, 5(10): 7356 doi: 10.1039/C4RA11900B
    [19] Chen Y, Zheng L, Fu Y, et al. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv, 2016, 6(89): 85917 doi: 10.1039/C6RA19041C
    [20] Song Y, Chen Y, Wu J, et al. Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J Alloys Compd, 2017, 694: 1246 doi: 10.1016/j.jallcom.2016.10.110
    [21] Zhang J, Chu R, Chen Y, et al. MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes. J Alloys Compd, 2019, 797: 83 doi: 10.1016/j.jallcom.2019.04.162
    [22] Yang T, Liu Y, Huang Z, et al. In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. J Alloys Compd, 2018, 735: 1079 doi: 10.1016/j.jallcom.2017.11.125
    [23] Fu Y, Zhong B, Chen Y, et al. Porous ZnO@C core–shell nanocomposites as high performance electrode materials for rechargeable lithium-ion batteries. J Porous Mater, 2016, 24(3): 613
    [24] Yue H, Shi Z, Wang Q, et al. In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries. RSC Adv, 2015, 5(92): 75653 doi: 10.1039/C5RA14271G
    [25] Hou C, Tai Z, Zhao L, et al. High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A, 2018, 6(20): 9723 doi: 10.1039/C8TA02863J
    [26] Cui Z, Liu Q, Xu C, et al. A new strategy to effectively alleviate volume expansion and enhance the conductivity of hierarchical MnO@C nanocomposites for lithium ion batteries. J Mater Chem A, 2017, 5(41): 21699 doi: 10.1039/C7TA05986H
    [27] Niu J L, Hao G X, Lin J, et al. Mesoporous MnO/C-N nanostructures derived from a metal-organic framework as high-performance anode for lithium-ion battery. Inorg Chem, 2017, 56(16): 9966 doi: 10.1021/acs.inorgchem.7b01486
    [28] Maiti S, Pramanik A, Mahanty S. Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal–organic framework. Cryst Eng Comm, 2016, 18(3): 450 doi: 10.1039/C5CE01976A
    [29] Tian X M, Zhao D L, Meng W J, et al. Highly porous MnO/C@rGO nanocomposite derived from MnBDC@rGO as high-performance anode material for lithium ion batteries. J Alloys Compd, 2019, 792: 487 doi: 10.1016/j.jallcom.2019.04.027
    [30] Xu Y H, Jian G Q, Zachariah M R, et al. Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries. J Mater Chem A, 2013, 1: 15486 doi: 10.1039/c3ta13698a
    [31] Ramaraju B, Li C H, Prakash S, et al. Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. Chem Comm, 2016, 52(5): 946 doi: 10.1039/C5CC07621H
    [32] Xu Y, Chu K, Li Z, et al. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Trans, 2020, 49(33): 11597 doi: 10.1039/D0DT02493G
    [33] Yin H, Yu X X, Li Q W, et al. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloys Compd, 2017, 706: 97 doi: 10.1016/j.jallcom.2017.02.215
    [34] Peng H J, Hao G X, Chu Z H, et al. Mesoporous spindle-like hollow CuO/C fabricated from a Cu-based metal-organic framework as anodes for high-performance lithium storage. J Alloys Compd, 2017, 727: 1020 doi: 10.1016/j.jallcom.2017.08.231
    [35] Kang M S, Lee D H, Lee K J, et al. Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. New J Chen, 2018, 42(23): 18678 doi: 10.1039/C8NJ04919J
    [36] Yang X, Wang Y, Hu Y Y, et al. Interior supported hierarchical TiO2@Co3O4 derived from MOF-on-MOF architecture with enhanced electrochemical properties for lithium storage. Chem Electro Chem, 2019, 6(14): 3657
    [37] Lu Y, Yu L, Wu M H, et al. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv Mater, 2018, 30(1): 1702875 doi: 10.1002/adma.201702875
    [38] Ding H, Zhang X K, Fan J Q, et al. MOF-templated synthesis of Co3O4@TiO2 hollow dodecahedrons for high-storage-density lithium-ion batteries. ACS Omega, 2019, 4(8): 13241 doi: 10.1021/acsomega.9b01405
    [39] Zhong M, Yang D H, Kong L J, et al. Bimetallic metal-organic framework derived Co3O4-CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans, 2017, 46(45): 15947 doi: 10.1039/C7DT03047A
    [40] Ge X, Li Z, Wang C, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces, 2015, 7(48): 26633 doi: 10.1021/acsami.5b08195
    [41] Huang G, Yin D, Zhang F, et al. Yolk@shell or concave cubic NiO-Co3O4@C nanocomposites derived from metal-organic frameworks for advanced lithium-ion battery anodes. Inorg Chem, 2017, 56(16): 9794 doi: 10.1021/acs.inorgchem.7b01296
    [42] Li Z, Yin L. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A, 2015, 3(43): 21569 doi: 10.1039/C5TA05733G
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  76
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回