粉末注射成形钛合金粘结剂体系的研究进展

尤力 刘艳军 潘宇 孙健卓 惠泰龙 杨宇承 于爱华 刘博文 李维斌 路新

尤力, 刘艳军, 潘宇, 孙健卓, 惠泰龙, 杨宇承, 于爱华, 刘博文, 李维斌, 路新. 粉末注射成形钛合金粘结剂体系的研究进展[J]. 粉末冶金技术, 2021, 39(6): 563-572. doi: 10.19591/j.cnki.cn11-1974/tf.2020090009
引用本文: 尤力, 刘艳军, 潘宇, 孙健卓, 惠泰龙, 杨宇承, 于爱华, 刘博文, 李维斌, 路新. 粉末注射成形钛合金粘结剂体系的研究进展[J]. 粉末冶金技术, 2021, 39(6): 563-572. doi: 10.19591/j.cnki.cn11-1974/tf.2020090009
YOU Li, LIU Yan-jun, PAN Yu, SUN Jian-zhuo, HUI Tai-long, YANG Yu-cheng, YU Ai-hua, LIU Bo-wen, LI Wei-bin, LU Xin. Research progress of titanium alloy binder system for powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(6): 563-572. doi: 10.19591/j.cnki.cn11-1974/tf.2020090009
Citation: YOU Li, LIU Yan-jun, PAN Yu, SUN Jian-zhuo, HUI Tai-long, YANG Yu-cheng, YU Ai-hua, LIU Bo-wen, LI Wei-bin, LU Xin. Research progress of titanium alloy binder system for powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(6): 563-572. doi: 10.19591/j.cnki.cn11-1974/tf.2020090009

粉末注射成形钛合金粘结剂体系的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020090009
基金项目: 国家自然科学基金资助项目(51874037,51922004);中央高校基本科研业务费专项资金资助项目(FRF-TP-19-054A2);北京市自然科学基金资助项目(2212035)
详细信息
    通讯作者:

    E-mail: yanjunliu_123@163.com

  • 中图分类号: TG146.2+3

Research progress of titanium alloy binder system for powder injection molding

More Information
  • 摘要: 钛及钛合金具有低比重、高比强度、优异的生物相容性以及良好的耐腐蚀性等特点,在航空航天、生物医疗、化工、船舶、汽车等领域极具应用潜力。钛合金粉末注射成形技术(powder injection molding,PIM)提高了材料的利用率,实现了中小型复杂形状钛产品的大批量、低成本制备,显著地推动了钛及钛合金产品的生产及应用。目前关于粉末注射成形钛合金粘结剂体系的相关文献报道十分有限,新型粉末注射成形钛合金粘结剂体系的开发处于停滞不前的状态。本文分析总结了不同粉末注射成形钛合金粘结剂体系的研究现状,并针对目前存在的问题提出改进措施。
  • 图  1  波音民航客机钛制品用量占比与研发时间关系

    Figure  1.  Relationship between the usage amount (mass fraction) and the development time of titanium products in Boeing commercial passenger aircraft

    图  2  部分粉末注射成形钛合金产品:(a)德国TiJet公司制备的工程应用零部件;(b)德国TiJet公司制备生物医用零部件;(c)Ti‒6Al‒7Nb合金骨螺钉;(d)CP-Ti人工镫骨;(e)钛合金眼镜架;(f)Ti‒6Al‒4V表壳实物

    Figure  2.  Parts of titanium alloy products by powder injection molding: (a) parts of engineering applications prepared by TiJet; (b) parts of biomedical applications prepared by TiJet; (c) Ti‒6Al‒7Nb bone screws; (d) CP-Ti artificial stapes; (e) titanium alloy spectacle frames; (f) Ti‒6Al‒4V watchcase

    图  3  氧质量分数对钛合金力学性能的影响[12]

    Figure  3.  Effect of oxygen mass fraction on the mechanical properties of titanium alloys[12]

    图  4  改进型以及传统型粘结剂喂料的热重分析曲线[17]

    Figure  4.  TGA curves of the improved and traditional feedstocks[17]

    图  5  不同粘结剂混合物的热重分析曲线[34]

    Figure  5.  TGA curves of the different binder blends[34]

    图  6  两组元粘结剂脱除模型[37]:(a)初始阶段;(b)连通孔隙形成;(c)低熔点组元脱除;(d)高熔点组元脱除

    Figure  6.  Two-component binder removal model[37]: (a) initial stage; (b) formation of connected pores; (c) removal of low melting point components; (d) removal of high melting point components

    图  7  催化脱脂模型示意图[39]:(a)脱脂催化反应;(b)催化脱脂动力学

    Figure  7.  Schematic diagram of the solvent debinding mode[39]: (a) catalytic debinding reaction; (b) catalytic debinding kinetics

    图  8  溶剂脱脂模型示意图[40]

    Figure  8.  Schematic diagram of the solvent debinding model[40]

    表  1  粉末注射成形钛合金常用粘结剂骨架剂组元的热力学性质

    Table  1.   Thermodynamic properties of the skeleton components of titanium alloys by powder injection molding

    聚合物组元结构热分解行为
    热分解起始
    温度 / ℃
    热分解结束
    温度 / ℃
    分解原理产物类型
    高密度聚乙烯(HDPE)368498随机断链烷烃、烯烃、少量单体
    低密度聚乙烯(LDPE)355467随机断链烷烃、烯烃、少量单体
    聚丙烯(PP)304420随机断链烷烃、烯烃、少量单体
    聚苯乙烯(PS)236426随机断链苯乙烯单体、二聚体及三聚体
    聚甲基丙烯酸甲酯(PMMA)278428端链断裂单体(约90%~100%)
    乙烯—醋酸乙烯共聚物(EVA)306491链式剥离乙酸、1-丁烯、CO2
    CO、乙烯、甲烷
    聚甲醛(POM)180395端链断裂甲醛单体
    注:以上各聚合物的热分解温度都是通过热分析曲线获得。
    下载: 导出CSV

    表  2  粉末注射成形钛粉杂质元素含量(质量分数)及力学性能[21]

    Table  2.   Impurity element content (mass fraction) and the mechanical properties of Ti powders used in PIM[21]

    成分O / %N / %C / %H / %相对密度 / %屈服强度 / MPa极限抗拉强度 / MPa延伸率 / %
    粉末注射成形钛粉0.300.270.0650.01397.151966615
    ASTM 四级纯钛0.400.050.0800.015100.048055015
    下载: 导出CSV

    表  3  喂料配方(体积分数)[3233]

    Table  3.   Feedstock formulations[3233] %

    喂料编号粉末含量PEGPVBSA粘结剂组元比例
    PEG:PVB:SA
    15533.89.02.275:20:5
    26030.08.02.075:20:5
    35536.06.82.280:15:5
    46032.06.02.080:15:5
    下载: 导出CSV
  • [1] Dehghan-Manshadi A, Stjohn D, Dargusch M S, et al. Metal injection moulding of non-spherical titanium powders: Processing, microstructure and mechanical properties. J Manuf Process, 2018, 31: 416 doi: 10.1016/j.jmapro.2017.12.004
    [2] Xu W, Lu X, Wang L N, et al. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti− 12Mo alloy for dental applications. J Mech Behav Biomed Mater, 2018, 88: 534 doi: 10.1016/j.jmbbm.2018.08.038
    [3] Zhang B Z, Sun J Q. Recent applications of titanium alloys in typical commercial aircraft fuselage structure. Adv Aeronaut Sci Eng, 2014, 5(3): 275

    张宝柱, 孙洁琼. 钛合金在典型民用飞机机体结构上的应用现状. 航空工业进展, 2014, 5(3): 275
    [4] Dehghan-Manshadi A, Bermingham M, Dargusch M, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 doi: 10.1016/j.powtec.2017.06.053
    [5] Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012

    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012
    [6] Aust E, Limberg W, Gerling R, et al. Advanced TiAl6Nb7 bone screw implant fabricated by metal injection moulding. Adv Eng Mater, 2006, 8(5): 365 doi: 10.1002/adem.200500134
    [7] Fu G, Loh N H, Tor S B, et al. Replication of metal microstructures by micro powder injection molding. Mater Des, 2004, 25(8): 729 doi: 10.1016/j.matdes.2004.01.013
    [8] Ye S, Mo W, Lü Y, et al. Metal injection molding of thin-walled titanium glasses arms: A case study. JOM, 2018, 70(5): 616 doi: 10.1007/s11837-018-2788-1
    [9] Ye S, Mo W, Lü Y, et al. The technological design of geometrically complex Ti−6Al−4V parts by metal injection molding. Appl Sci, 2019, 9: 1339 doi: 10.3390/app9071339
    [10] Lu X, Liu C C, Qu X H. Research progresses of powder injection molding for titanium alloys. Powder Metall Technol, 2013, 31(2): 139 doi: 10.3969/j.issn.1001-3784.2013.02.011

    路新, 刘程程, 曲选辉. 钛及钛合金粉末注射成形技术研究进展. 粉末冶金技术, 2013, 31(2): 139 doi: 10.3969/j.issn.1001-3784.2013.02.011
    [11] Wen G, Cao P, Gabbitas B, et al. Development and design of binder systems for titanium metal injection molding: an overview. Metall Mater Trans A, 2013, 44(3): 1530 doi: 10.1007/s11661-012-1485-x
    [12] Froes F H S. Advances in titanium metal injection molding. Powder Metall Met Ceram, 2007, 46(5-6): 303 doi: 10.1007/s11106-007-0048-y
    [13] Nyberg E, Miller M, Simmons K, et al. Microstructure and mechanical properties of titanium components fabricated by a new powder injection molding technique. Mater Sci Eng C, 2005, 25(3): 336 doi: 10.1016/j.msec.2005.04.006
    [14] Gerling R, Aust E, Limberg M, et al. Metal injection moulding of gamma titanium aluminide alloy powder. Mater Sci Eng A, 2006, 423(1-2): 262 doi: 10.1016/j.msea.2006.02.002
    [15] Obasi G C, Ferri O M, Ebel T, et al. Influence of processing parameters on mechanical properties of Ti− 6Al− 4V alloy fabricated by MIM. Mater Sci Eng A, 2010, 527(16-17): 3929 doi: 10.1016/j.msea.2010.02.070
    [16] Guo S B, Duan B H, He X B, et al. Powder injection molding of pure titanium. Rare Met, 2009, 28(3): 261 doi: 10.1007/s12598-009-0052-0
    [17] Liu C C, Lu X, Yang F, et al. Metal injection moulding of high Nb-containing TiAl alloy and its oxidation behaviour at 900 ℃. Metals, 2018, 8(3): 163 doi: 10.3390/met8030163
    [18] Friederici V, Bruinink A, Imgrund P, et al. Getting the powder mix right for design of bone implants. Met Powder Rep, 2010, 65(7): 14 doi: 10.1016/S0026-0657(11)70041-8
    [19] Wang J H, Shi Q N, Wu C L, et al. Rheological characteristics of injection molded titanium alloys powder. Trans Nonferrous Met Soc China, 2013, 23(9): 2605 doi: 10.1016/S1003-6326(13)62774-0
    [20] Li Y, Zhang X Q, Zhu J, et al. Study on debinding process of Ti− Mo getter material by powder injection molding. J Funct Mater, 2014, 45(2): 2110 doi: 10.3969/j.issn.1001-9731.2014.02.023

    李洋, 张心强, 朱君, 等. Ti− Mo吸气材料注射成形脱脂工艺的研究. 功能材料, 2014, 45(2): 2110 doi: 10.3969/j.issn.1001-9731.2014.02.023
    [21] Carrño-Morelli E, Bidaux J E, Rodríguez-Arbaizar M, et al. Production of titanium grade 4 components by powder injection moulding of titanium hydride. Powder Metall, 2014, 57(2): 89 doi: 10.1179/0032589914Z.000000000165
    [22] Krug S, Evans J R G, Maat J H H T. Residual stresses and cracking in large ceramic injection mouldings subjected to different solidification schedules. J Eur Ceram Soc, 2000, 20(14-15): 2535 doi: 10.1016/S0955-2219(00)00120-5
    [23] Krug S, Evans J R G, Maat J H H T. Transient effects during catalytic binder removal in ceramic injection moulding. J Eur Ceram Soc, 2001, 21(12): 2275 doi: 10.1016/S0955-2219(00)00312-5
    [24] Zhang C, Liu C L. Rheological behavior and degreasing process of polyformaldehyde/polypropylene/titanium catalytic degreasing material for metal powder injection molding. Hot Working Technol, 2017, 46(24): 45

    章诚, 刘春林. 金属粉末注射成型催化脱脂料POM/PP/Ti的流变行为及脱脂工艺. 热加工工艺, 2017, 46(24): 45
    [25] Luo H, Zong W, Zhou W Z, et al. Analysis of rheological behavior of catalytic debinding feedstocks for In713C superalloy metal injection molding. Mater Res Appl, 2016, 10(3): 205 doi: 10.3969/j.issn.1673-9981.2016.03.011

    罗浩, 宗伟, 周晚珠, 等. 注射成形聚甲醛基In713C高温合金喂料流变行为的研究. 材料研究与应用, 2016, 10(3): 205 doi: 10.3969/j.issn.1673-9981.2016.03.011
    [26] Zhu H Y, Zhou S Q, Song S H, et al. Rheological properties of new type POM/PE alloy feedstocks. J Mater Sci Eng, 2018, 36(1): 103

    朱海洋, 周淑千, 宋善寒, 等. 新型POM/PE合金喂料的流变特性. 材料科学与工程学报, 2018, 36(1): 103
    [27] Gonzalez-Gutierrez J, Stringari G B, Megen Z M, et al. Selection of appropriate polyoxymethylene based binder for feedstock material used in powder injection moulding. J Phys Conf Ser, 2015, 602(1): 012001
    [28] Sidambe A T, Figueroa I A, Hamilton H, et al. Metal injection moulding of Ti-64 components using a water soluble binder. PIM Int, 2010, 4(4): 56
    [29] Hayat M D, Wen G, Zulkifli M F, et al. Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behaviour. Powder Technol, 2015, 270: 296 doi: 10.1016/j.powtec.2014.10.035
    [30] Hayat M D, Li T, Cao P. Incorporation of PVP into PEG/PMMA based binder system to minimize void nucleation. Mater Des, 2015, 87: 932 doi: 10.1016/j.matdes.2015.08.131
    [31] Hayat M D, Goswami A, Matthews S, et al. Modification of PEG/PMMA binder by PVP for titanium metal injection moulding. Powder Technol, 2017, 315: 243 doi: 10.1016/j.powtec.2017.04.004
    [32] Thavanayagam G, Pickering K L, Swan J E, et al. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol, 2015, 269: 227 doi: 10.1016/j.powtec.2014.09.020
    [33] Thavanayagam G, Swan J E. Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technol, 2018, 326: 402 doi: 10.1016/j.powtec.2017.11.069
    [34] Hayat M D, Jadhav P P, Zhang H, et al. Improving titanium injection moulding feedstock based on PEG/PPC based binder system. Powder Technol, 2018, 330: 304 doi: 10.1016/j.powtec.2018.02.043
    [35] Guo S B, Quan X H. Research progress in binders used for metal injection molding. Powder Metall Technol, 2004, 3: 178 doi: 10.3321/j.issn:1001-3784.2004.03.012

    郭世柏, 曲选辉. 金属注射成形粘结剂的研究进展. 粉末冶金技术, 2004, 3: 178 doi: 10.3321/j.issn:1001-3784.2004.03.012
    [36] He Y Q, Qiao B, Yang J M, et al. Research status and developing of metal injection molding. Adv Mater Res, 2013, 629(105): 100
    [37] Li Y M, Li Y P. Theory and Application of Metal Injection Molding. Changsha: Central South University Press, 2004.

    李益民, 李云平. 金属注射成形原理与应用. 长沙: 中南大学出版社, 2004.
    [38] Chen G, Cao P, Wen G, et al. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Mater Chem Phys, 2013, 139(2-3): 557 doi: 10.1016/j.matchemphys.2013.01.057
    [39] Zheng L Q. Catalytic Debinding for Powder Injection Molding [Dissertation]. Changsha: Central South University, 2009.

    郑礼清. 粉末注射成形催化脱脂研究[学位论文]. 长沙: 中南大学, 2009.
    [40] German R M. Powder Injectin Molding. Changsha: Central South University Press, 2001.

    German R M. 粉末注射成形. 长沙: 中南大学出版社, 2001.
    [41] Guo S B, Zhang H A, Zhang R F, et al. Research on solvent debinding process of titanium alloy compacts by metal injection molding. Rare Metal Mater Eng, 2007, 36(3): 537 doi: 10.3321/j.issn:1002-185X.2007.03.040

    郭世柏, 张厚安, 张荣发, 等. 钛合金粉末注射成形溶剂脱脂工艺研究. 稀有金属材料与工程, 2007, 36(3): 537 doi: 10.3321/j.issn:1002-185X.2007.03.040
    [42] Liu C, Kong X J, Kuang C J. Research on powder injection molding of grade 2 cp-titanium for biomedical application. Powder Metall Technol, 2016, 34(4): 281 doi: 10.3969/j.issn.1001-3784.2016.04.009

    刘超, 孔祥吉, 况春江, 等. 生物医用二级纯钛注射成形研究. 粉末冶金技术, 2016, 34(4): 281 doi: 10.3969/j.issn.1001-3784.2016.04.009
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  432
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回