淬火处理过程中的局部干涉对FGH96合金表面组织的影响

刘光旭 王晓峰 杨杰 邹金文

刘光旭, 王晓峰, 杨杰, 邹金文. 淬火处理过程中的局部干涉对FGH96合金表面组织的影响[J]. 粉末冶金技术, 2023, 41(2): 143-148. doi: 10.19591/j.cnki.cn11-1974/tf.2020090012
引用本文: 刘光旭, 王晓峰, 杨杰, 邹金文. 淬火处理过程中的局部干涉对FGH96合金表面组织的影响[J]. 粉末冶金技术, 2023, 41(2): 143-148. doi: 10.19591/j.cnki.cn11-1974/tf.2020090012
LIU Guangxu, WANG Xiaofeng, YANG Jie, ZOU Jinwen. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process[J]. Powder Metallurgy Technology, 2023, 41(2): 143-148. doi: 10.19591/j.cnki.cn11-1974/tf.2020090012
Citation: LIU Guangxu, WANG Xiaofeng, YANG Jie, ZOU Jinwen. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process[J]. Powder Metallurgy Technology, 2023, 41(2): 143-148. doi: 10.19591/j.cnki.cn11-1974/tf.2020090012

淬火处理过程中的局部干涉对FGH96合金表面组织的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020090012
详细信息
    通讯作者:

    E-mail: wangxiaofeng_0404@163.com

  • 中图分类号: TG132.3

Effect of local interference on the surface microstructure of FGH96 alloys in quenching process

More Information
  • 摘要: 采用光学显微镜(optical microscope,OM)、扫描电子显微镜(scanning electron microscope,SEM)、电子探针(electron probe microanalysis,EMPA)、显微硬度计和数值模拟等手段,研究了淬火处理过程中的局部干涉(淬火夹具)对FGH96合金表面组织的影响。结果表明,淬火处理用夹具对热态FGH96合金表面产生激冷作用,改变了接触点位置合金的冷却方式,进而改变了γ′相的析出和长大行为。经低倍腐蚀后,不同尺寸和形貌的γ′相出现了视觉上的色差,宏观上表现为腐蚀圈的形成。腐蚀圈的最大直径为~10 mm,截面深度为~3 mm;腐蚀圈内二次γ′相呈细小球状分布,平均尺寸为~100 nm;腐蚀圈上二次γ′相呈多边形分布,平均尺寸为~350 nm;圈外二次γ′相呈球状分布,平均尺寸为~150 nm。二次γ′相的尺寸和形貌的差异导致腐蚀圈内外显微硬度的波动,圈外显微硬度平均为~HV 450,圈内达到了~HV 485。除此之外,腐蚀圈附近区域无晶粒组织差异,无元素偏析情况。
  • 图  1  固溶处理保温结束后FGH96合金与夹具接触位置温度场模拟结果

    Figure  1.  Simulation results of temperature field at the contact region between the holding devices and FGH96 alloys after solution treatment

    图  2  FGH96合金表面腐蚀圈:(a)表面整体形貌;(b)截面形貌

    Figure  2.  Corrosion circles on the surface of FGH96 alloys: (a) overall surface morphology; (b) cross section morphology

    图  3  图2中腐蚀圈不同位置金相形貌:(a)位置1;(b)位置2;(c)位置3

    Figure  3.  OM images of the corrosion circles in the different positions of Fig.2: (a) position 1; (b) position 2; (c) position 3

    图  4  图2中腐蚀圈不同位置显微形貌:(a)位置1;(b)位置2;(c)位置3

    Figure  4.  SEM images of the corrosion circles in the different positions of Fig.2: (a) position 1; (b) position 2; (c) position 3

    图  5  腐蚀圈区域显微硬度

    Figure  5.  Microhardness of the corrosion circle zone

    图  6  腐蚀圈区域电子探针线扫元素分布

    Figure  6.  Element distribution obtained from EPMA line scan in the corrosion circle region

    图  7  FGH96合金腐蚀圈形成机理示意图

    Figure  7.  Schematic diagram of the corrosion circle formation mechanism of FGH96 alloys

    图  8  腐蚀圈形貌:(a)二次固溶前;(b)二次固溶后

    Figure  8.  Morphology of the corrosion circles: (a) before the secondary solution; (b) after the secondary solution

  • [1] Zou J W, Wang W X. Development and application of powder P/M superalloy. J Aeronaut Mater, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051

    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051
    [2] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [3] Xu W Y, Li Z, Liu Y F, et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders. Powder Metall Technol, 2020, 38(3): 192 doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004

    许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响. 粉末冶金技术, 2020, 38(3): 192 doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
    [4] Zhong Z Y, Zhang Y W, Liu J T, et al. Effects of aging heat treatment on the microstructure and properties of a new type nickel-based PM superalloy. Powder Metall Technol, 2020, 30(3): 14

    钟治勇, 张义文, 刘建涛, 等. 时效处理对一种新型粉末高温合金组织和性能的影响. 粉末冶金技术, 2020, 30(3): 14
    [5] Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT. Mater Sci Eng A, 2002, 332(1-2): 318 doi: 10.1016/S0921-5093(01)01758-0
    [6] Klepser C A. Effect of continuous cooling rate on the precipitation of gamma prime in nickel-based superalloys. Scr Metall Mater, 1995, 33(4): 589 doi: 10.1016/0956-716X(95)00234-M
    [7] Huang G C, Liu G Q, Feng M N, et al. The effect of cooling rates from temperatures above the γ′ solvus on the microstructure of a new nickel-based powder metallurgy superalloy. J Alloys Compd, 2018, 747: 1062 doi: 10.1016/j.jallcom.2018.03.072
    [8] Qiu C L, Wu X H, Mei J F, et al. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J Alloys Compd, 2013, 578: 454 doi: 10.1016/j.jallcom.2013.06.045
    [9] Kissinger R D. Cooling path dependent behavior of a supersolvus heat treated nickel base superalloy. Superalloys, 1996, 1996: 687
    [10] Gv Boittin D L, Rafrayl A, Caron P, et al. Influence of γ′ precipitate size and distribution on LCF behavior of a PM disk superalloy. Superalloys, 2012, 2012: 167
    [11] Zhang M J, Li F G, Wang S Y, et al. Effect of powder preparation technology on the hot deformation behaviour of HIPed P/M nickel-base superalloy FGH96. Mater Sci Eng A, 2011, 528(12): 4030 doi: 10.1016/j.msea.2011.01.118
    [12] Zhou L, Wang Y, Zou J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96. Powder Metall Technol, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008

    周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响. 粉末冶金技术, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008
    [13] Wang X F, Yang J, Zou J W, et al. Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology. Powder Metall Technol, 2019, 37(4): 264 doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005

    王晓峰, 杨杰, 邹金文, 等. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究. 粉末冶金技术, 2019, 37(4): 264 doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.005
    [14] Wu K, Liu G Q, Hu B F, et al. Effect of solution cooling rate and post treatment on γ′ precipitation and microhardness of a novel nickel-based P/M superalloy FGH98I. Rare Met Mater Eng, 2012, 41(7): 1267 doi: 10.3969/j.issn.1002-185X.2012.07.031

    吴凯, 刘国权, 胡本芙, 等. 固溶冷却速度和后处理对新型FGH98I镍基粉末高温合金γ′相析出和显微硬度的影响. 稀有金属材料与工程, 2012, 41(7): 1267 doi: 10.3969/j.issn.1002-185X.2012.07.031
    [15] Liu H S, Zhang L, He X B, et al. Precipitation behavior of γ′ phase in superalloy FGH96 under interrupted cooling test. Rare Met, 2013, 32(6): 560 doi: 10.1007/s12598-013-0072-7
  • 加载中
图(8)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  48
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回