金属钼-氧化物金属陶瓷高温导电性能

齐素慈 李建朝 许继芳

齐素慈, 李建朝, 许继芳. 金属钼-氧化物金属陶瓷高温导电性能[J]. 粉末冶金技术, 2023, 41(6): 572-576. doi: 10.19591/j.cnki.cn11-1974/tf.2020090013
引用本文: 齐素慈, 李建朝, 许继芳. 金属钼-氧化物金属陶瓷高温导电性能[J]. 粉末冶金技术, 2023, 41(6): 572-576. doi: 10.19591/j.cnki.cn11-1974/tf.2020090013
QI Suci, LI Jianchao, XU Jifang. High-temperature conductivity of Mo-oxide cermet[J]. Powder Metallurgy Technology, 2023, 41(6): 572-576. doi: 10.19591/j.cnki.cn11-1974/tf.2020090013
Citation: QI Suci, LI Jianchao, XU Jifang. High-temperature conductivity of Mo-oxide cermet[J]. Powder Metallurgy Technology, 2023, 41(6): 572-576. doi: 10.19591/j.cnki.cn11-1974/tf.2020090013

金属钼-氧化物金属陶瓷高温导电性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020090013
基金项目: 国家自然科学基金资助项目(51704201);河北省高等学校科学研究计划青年基金资助项目(QN2020161);河北工业职业技术学院自然科学项目(ZRY2017001));省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室开放课题(SKLASS 2019-10);上海市科学技术委员会资助项目(19DZ2270200)
详细信息
    通讯作者:

    E-mail: wlzcn15@163.com

  • 中图分类号: TG148

High-temperature conductivity of Mo-oxide cermet

More Information
  • 摘要: 以Mo-ZrO2、Mo-SiO2和Mo-Al2O3金属陶瓷为研究对象,基于通用有效介质方程建立金属陶瓷的电导率模型,分析温度、氧化物类型、相对密度等因素对其电导率的影响,并利用实验进行验证。结果表明,三种金属陶瓷电导率的氧化物临界体积分数分别为0.249,0.095和0.145,临界指数分别为2.52,3.20和2.90。电导率模型计算结果与实验结果吻合程度较好。当陶瓷相体积分数较低时,呈现电子电导的温阻特性;当陶瓷相体积分数较高时,呈现离子电导的温阻特性。金属钼-氧化物金属陶瓷高温导体材料中氧化物体积分数不宜超过0.6。氧化物类型对金属陶瓷的导电性能影响较小,相对密度或孔隙度对金属陶瓷电导率影响较大,相对电导率随着相对密度的降低而急剧减小,相对密度值以大于0.95为宜。
  • 图  1  金属Mo纯物质电导率随温度变化[9]

    Figure  1.  Effect of temperature on the electrical conductivity of pure Mo[9]

    图  2  纯氧化物(ZrO2,SiO2,Al2O3)电导率随温度变化[1012]

    Figure  2.  Effect of temperature on the electrical conductivity of pure oxides (ZrO2, SiO2, Al2O3)[1012]

    图  3  金属钼-氧化物(ZrO2,SiO2,Al2O3)金属陶瓷电导率[2,1314]

    Figure  3.  Electrical conductivity of the Mo-oxide (ZrO2, SiO2, Al2O3) cermet[2,1314]

    图  4  钼基氧化物金属陶瓷电导率随温度变化

    Figure  4.  Electrical conductivity of the Mo-based oxide cermet at different temperatures

    图  5  不同氧化物钼基金属陶瓷电导率

    Figure  5.  Electrical conductivity of the Mo-based cermet with different oxides

    图  6  相对密度(孔隙率)对钼基氧化物金属陶瓷相对电导率的影响

    Figure  6.  Effect of relative density (or porosity) on the relative conductivity for the Mo-based oxide cermet

  • [1] Xiong Z, Jiang W, Shi Y, et al. Evaluation of high-temperature strength of Mo/PSZ composites by modified small punch tests. Mater Trans, 2005, 46(3): 631 doi: 10.2320/matertrans.46.631
    [2] Guo Y L, Tang L, Zhang J Y. Sintering, microstructure, and electrical conductivity of zirconia-molybdenum cermet. J Mater Eng Perform, 2015, 24(8): 3180 doi: 10.1007/s11665-015-1562-6
    [3] Zhang D D, Nie F, Wei S Z, et al. Influence of process control agent on the refinement of Al2O3/Mo composite powder. Powder Metall Technol, 2011, 29(6): 403

    张丹丹, 倪锋, 魏世忠, 等. 过程控制剂对Al2O3/Mo复合粉末细化的影响. 粉末冶金技术, 2011, 29(6): 403
    [4] Kats M, Byl’kova Z I, Bogin N, et al. Thermal conductivity of lamellar metal/cermet composite materials based on ZrO2-Mo and Mo. Poroshk Metall, 1985, 266(2): 61
    [5] Wang Q, Guo C, Liu Y X. Research on metal-ceramic die material used for robot cover. Powder Metall Technol, 2020, 38(3): 357 doi: 10.19591/j.cnki.cn11-1974/tf.2019120012

    王强, 郭超, 刘永兴. 机器人覆盖件用金属陶瓷模具材料的研究. 粉末冶金技术, 2020, 38(3): 357 doi: 10.19591/j.cnki.cn11-1974/tf.2019120012
    [6] Martinelli J R, Sene F F. Electrical resistivity of ceramic-metal composite materials: application in crucibles for induction furnaces. Ceram Int, 2000, 26(3): 325 doi: 10.1016/S0272-8842(99)00059-0
    [7] Mclachlan D S, Blaszkiewicz M. Electric resistivity of composites. J Am Ceram Soc, 1990, 73(8): 2187 doi: 10.1111/j.1151-2916.1990.tb07576.x
    [8] Tchmutin I, Ponomarenko A, Krinichnaya E, et al. Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 2003, 41: 1391 doi: 10.1016/S0008-6223(03)00067-8
    [9] Wang L S. Special Ceramic. Changsha: Central South University Press, 1994

    王零森. 特种陶瓷. 长沙: 中南工业大学出版社, 1994
    [10] Muccillo E N S, Kleitz M. Impedance spectroscopy of Mg-partially stabilized zirconia and cubic phase decomposition. J Eur Ceram Soc, 1996, 16(4): 453 doi: 10.1016/0955-2219(95)00125-5
    [11] Peters D W, Feinstein L, Peltzer C. On the high-temperature electrical conductivity of alumina. J Chem Phy, 1965, 42(7): 2345 doi: 10.1063/1.1696298
    [12] Seemann H E. The thermal and electrical conductivity of fused quartz as a function of temperature. Phys Rev, 1928, 31(1): 119 doi: 10.1103/PhysRev.31.119
    [13] Ishibashi H, Tobimatsu H, Hayashi K, et al. Characterization of Mo-SiO2 functionally graded materials. Metall Mater Trans A, 2000, 31(1): 299 doi: 10.1007/s11661-000-0074-6
    [14] Egorov F F. Electrical conductivity of ZrN-Al2O3, Mo-Al2O3, and ZrN-Mo composite powders. Sov Powder Metall Met Ceram, 1980, 19(10): 705 doi: 10.1007/BF00793421
    [15] Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382 doi: 10.19591/j.cnki.cn11-1974/tf.2019.05.010

    赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382 doi: 10.19591/j.cnki.cn11-1974/tf.2019.05.010
    [16] Mizusaki J, Tsuchiya S, Waragi K, et al. Simple mathematical model for the electrical conductivity of highly porous ceramics. J Am Ceram Soc, 1996, 79(1): 109 doi: 10.1111/j.1151-2916.1996.tb07887.x
  • 加载中
图(6)
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  56
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回