水热法制备纳米氧化镁

鲁琴瑶 张荣良 陆添爱 李聪 曾加 周琳凯 高妍妍

鲁琴瑶, 张荣良, 陆添爱, 李聪, 曾加, 周琳凯, 高妍妍. 水热法制备纳米氧化镁[J]. 粉末冶金技术, 2023, 41(4): 350-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020100005
引用本文: 鲁琴瑶, 张荣良, 陆添爱, 李聪, 曾加, 周琳凯, 高妍妍. 水热法制备纳米氧化镁[J]. 粉末冶金技术, 2023, 41(4): 350-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020100005
LU Qinyao, ZHANG Rongliang, LU Tian’ai, LI Cong, ZENG Jia, ZHOU Linkai, Gao Yanyan. Preparation of nanometric magnesium oxide by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(4): 350-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020100005
Citation: LU Qinyao, ZHANG Rongliang, LU Tian’ai, LI Cong, ZENG Jia, ZHOU Linkai, Gao Yanyan. Preparation of nanometric magnesium oxide by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(4): 350-355. doi: 10.19591/j.cnki.cn11-1974/tf.2020100005

水热法制备纳米氧化镁

doi: 10.19591/j.cnki.cn11-1974/tf.2020100005
基金项目: 江苏省研究生创新项目(KYCX20_3133)
详细信息
    通讯作者:

    E-mail: zhangrljx19201@163.com

  • 中图分类号: TQ132.2

Preparation of nanometric magnesium oxide by hydrothermal method

More Information
  • 摘要: 以氯化镁与氨水为原料,聚乙二醇为分散剂,用水热法制备出纳米氧化镁。通过X射线衍射仪和扫描电子显微镜表征产物的晶体结构、显微形貌和颗粒尺寸,探讨了MgCl2和氨水的摩尔比、反应温度、反应时间对前驱体的影响。对前驱体进行差热分析,研究前驱体煅烧温度和煅烧时间对纳米MgO的影响。结果表明:当MgCl2和氨水的摩尔比为1.0:2.5,反应温度为200 ℃,反应时间为3.0 h,前驱体煅烧温度为600 ℃,煅烧时间为2.0 h时,得到的纳米MgO颗粒呈圆盘状,分散均匀,基本无团聚现象,颗粒直径约为100 nm,厚度最小约为10 nm。
  • 图  1  不同MgCl2与氨水的摩尔比下制备的前驱体X射线衍射图

    Figure  1.  X-ray diffraction patterns of the precursors prepared at different molar ratios of MgCl2 to ammonia

    图  2  不同水热反应温度下制备的前驱体X射线衍射图

    Figure  2.  X-ray diffraction patterns of the precursors prepared at different hydrothermal reaction temperatures

    图  3  不同水热反应时间下制备的前驱体X射线衍射图

    Figure  3.  X-ray diffraction patterns of the precursors prepared under different hydrothermal reaction time

    图  4  前驱体热重-示差扫描量热分析曲线

    Figure  4.  TG-DSC curves of the precursors

    图  5  不同煅烧温度下制备产物的X射线衍射图

    Figure  5.  X-ray diffraction patterns of the products prepared at different calcination temperatures

    图  6  不同煅烧温度下产物显微形貌:(a)400 ℃;(b)500 ℃;(c)600 ℃;(d)700 ℃

    Figure  6.  SEM images of the products prepared at different calcination temperatures: (a) 400 ℃; (b) 500 ℃; (c) 600 ℃; (d) 700 ℃

    图  7  不同煅烧时间制备产物的X射线衍射图

    Figure  7.  X-ray diffraction patterns of the products prepared at different calcination times

    图  8  不同煅烧时间下产物显微形貌:(a)1.0 h;(b)2.0 h;(c)2.5 h;(d)3.0 h

    Figure  8.  SEM images of the products prepared under different calcination time: (a) 1.0 h; (b) 2.0 h; (c) 2.5 h; (d) 3.0 h

  • [1] Zhou H X, Liu W J, Zhu F Y. Introduction of the nanometer magnesia preparation methods. J Salt Chem Ind, 2014, 43(7): 4

    周红霞, 刘维俊, 朱发岩. 纳米氧化镁制备方法与进展. 盐业与化工, 2014, 43(7): 4
    [2] Li P. Preparation of spherical nano-MgO and its influencing factors on particle size. Chem Res Appl, 2019, 31(4): 747 doi: 10.3969/j.issn.1004-1656.2019.04.026

    李萍. 球形纳米氧化镁的制备及其粒度影响因素. 化学研究与应用, 2019, 31(4): 747 doi: 10.3969/j.issn.1004-1656.2019.04.026
    [3] Zhang B, Xiao W C, Xu H, et al. Research on preparation and application of nano magnesium oxide with different morphologies. New Chem Mater, 2017, 45(5): 43

    章波, 肖文灿, 徐浩, 等. 不同形貌纳米MgO的制备及其应用研究. 化工新型材料, 2017, 45(5): 43
    [4] Zhao B, Wan X G, Song W H, et al. Nano-MgO particle addition in silver-sheathed (Bi,Pb)2Sr2Ca2Cu3O x tapes. Phys C, 2000, 337(1): 138
    [5] Huang L, Li D Q, Lin Y J, et al. Controllable preparation of nanometer MgO and its killing effect on B.niger. Sci Bull, 2004, 22: 2294

    黄蕾, 李殿卿, 林彦军, 等. 纳米MgO的可控制备及其对B.niger的杀灭性能. 科学通报, 2004, 22: 2294
    [6] Zhou J J, Xia Y, Gong Y Y, et al. Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. Sci Total Environ, 2020, 7(11): 103
    [7] Zhu Y X, Zeng R J, Liu X J, et al. Preparation and characterization of MgO nanopowders. J Xiamen Univ Nat Sci, 2001(6): 1256

    朱亚先, 曾人杰, 刘新锦, 等. MgO纳米粉制备及表征. 厦门大学学报(自然科学版), 2001(6): 1256
    [8] Sathyamoorthy R, Mageshwari K, Mali S S, et al. Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram Int, 2013, 39: 323 doi: 10.1016/j.ceramint.2012.06.028
    [9] Guan H B, Wang P, Zhao B Y, et al. Preparation of high specific surface area nano-MgO. J Catal, 2006(9): 793

    管洪波, 王培, 赵璧英, 等. 低温固相法制备高比表面积的纳米MgO. 催化学报, 2006(9): 793
    [10] Jin Y H, Pan X J, Dai R M, et al. Study on preparation of nano-MgO by direct precipitation of ammonium carbonate. Inorg Salt Ind, 2014, 46(7): 33 doi: 10.3969/j.issn.1006-4990.2014.07.009

    金艳花, 潘旭杰, 代如梅, 等. 碳酸铵直接沉淀法制备纳米氧化镁的研究. 无机盐工业, 2014, 46(7): 33 doi: 10.3969/j.issn.1006-4990.2014.07.009
    [11] Wen Y Z, Xue Y Q, Cui Z X, et al. Preparation of nano-MgO with different particle size by homogeneous precipitation method. Powder Metall Ind, 2014, 24(3): 1 doi: 10.3969/j.issn.1006-6543.2014.03.001

    温艳珍, 薛永强, 崔子祥, 等. 均匀沉淀法制备不同粒径的纳米MgO. 粉末冶金工业, 2014, 24(3): 1 doi: 10.3969/j.issn.1006-6543.2014.03.001
    [12] Pampuch R, Tomaszewski H, Haberko K. Hot-pressing of active magnesia. Ceram Int, 1975, 1(2): 81 doi: 10.1016/0390-5519(75)90011-3
    [13] Chhor K, Bocquet J F, Pommier C. Syntheses of submicron magnesium oxide powders. Mater Chem Phys, 1995, 40(1): 63 doi: 10.1016/0254-0584(94)01452-M
    [14] Liu Z. Preparation of nano-MgO from magnesite by sol-gel method. Appl Chem, 2012, 41(5): 837

    刘振. 溶胶-凝胶法由菱镁矿制备纳米氧化镁. 应用化工, 2012, 41(5): 837
    [15] Luo Z X, Chen H K, Kang F, et al. Preparation of nano-MgO by ionic liquid-assisted hydrothermal method. Chem Eng, 2016, 30(12): 1

    罗竹溪, 陈虎魁, 康芳, 等. 离子液体辅助水热法制备纳米氧化镁. 化学工程师, 2016, 30(12): 1
    [16] Qu Y, Liang S Y, Yu J, et al. Synthesis of MgO nanosheets for catalyzing synthesis chalcone. J Nat Sci Heilongjiang Univ, 2019, 36(2): 196

    曲阳, 梁松岩, 余俊, 等. 合成氧化镁纳米片及其催化合成查尔酮性能. 黑龙江大学自然科学学报, 2019, 36(2): 196
    [17] Sun T H, Hao S J, Jiang W F, et al. Preparation and morphology analysis of nano-sized iron oxide. Powder Metall Technol, 2021, 39(1): 76

    孙天昊, 郝素菊, 蒋武锋, 等. 纳米氧化铁的制备及形貌分析. 粉末冶金技术, 2021, 39(1): 76
  • 加载中
图(8)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  156
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-11
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回