增材制造TiAl基合金的研究进展

王虎 赵琳 彭云 王艳杰 田志凌

王虎, 赵琳, 彭云, 王艳杰, 田志凌. 增材制造TiAl基合金的研究进展[J]. 粉末冶金技术, 2022, 40(2): 110-117. doi: 10.19591/j.cnki.cn11-1974/tf.2020100009
引用本文: 王虎, 赵琳, 彭云, 王艳杰, 田志凌. 增材制造TiAl基合金的研究进展[J]. 粉末冶金技术, 2022, 40(2): 110-117. doi: 10.19591/j.cnki.cn11-1974/tf.2020100009
WANG Hu, ZHAO Lin, PENG Yun, WANG Yan-jie, TIAN Zhi-ling. Research progress of TiAl-based alloys fabricated by additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 110-117. doi: 10.19591/j.cnki.cn11-1974/tf.2020100009
Citation: WANG Hu, ZHAO Lin, PENG Yun, WANG Yan-jie, TIAN Zhi-ling. Research progress of TiAl-based alloys fabricated by additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 110-117. doi: 10.19591/j.cnki.cn11-1974/tf.2020100009

增材制造TiAl基合金的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020100009
基金项目: 国家重点研发计划资助项目(2017YFB1103300);河北省高等学校科学技术研究项目(QN2020256);北华航天工业学院青年基金资助项目(KY202103)
详细信息
    通讯作者:

    E-mail: hhnds@aliyun.com

  • 中图分类号: TG146.2

Research progress of TiAl-based alloys fabricated by additive manufacturing

More Information
  • 摘要: TiAl基合金具有优异的高温性能,是一种极具竞争力的新型轻质高温结构材料,在汽车、军工、航空航天等领域具有广阔的发展潜力和应用前景。然而,TiAl基合金室温脆性较大,成形困难,是阻碍其发展与应用的主要瓶颈之一。增材制造基于“离散+堆积”的成形思想,以激光、电子束、电弧等作为高能热源,通过熔化丝材或者粉末,逐层堆积实现零件的近净成形,是TiAl基合金最前沿、最具潜力的成形技术。本文主要概述了激光增材制造、电子束选区熔化、电弧增材制造TiAl基合金的研究进展,并展望了增材制造TiAl基合金的研究方向。
  • 图  1  激光熔化沉积成形TiAl基合金中的裂纹[10]:(a)散焦+3.81 mm,功率200 W;(b)散焦‒3.81 mm,功率200 W;(c)散焦+3.81 mm,功率300 W;(d)散焦‒3.81 mm,功率300 W

    Figure  1.  Cracks in the TiAl-based alloys formed by LMD[10]: (a) defocused to +3.81 mm at 200 W; (b) defocused to ‒3.81 mm at 200 W; (c) defocused to +3.81 mm at 300 W; (d) defocused to ‒3.81 mm at 300 W

    图  2  高速摄像机拍摄的“吹粉”现象[24]

    Figure  2.  Phenomenon of “Powder blowing” recorded by the high-speed camera[24]

    图  3  电子束选区熔化成形TiAl基合金的工艺窗口[25]:(a)低扫描速度;(b)高扫描速度

    Figure  3.  Process window of the TiAl-based alloys prepared by SEBM[25]: (a) at low scanning speed; (b) at high scanning speed

    图  4  电弧增材制造成形TiAl合金的微观组织[36]:(a)横截面;(b)顶部区;(c)带状区;(d)近基板区

    Figure  4.  Microstructure of the TiAl alloy prepared by WAAM[36]: (a) the cross-section; (b) the top region; (c) the layer bands; (d) the near-substrate region

    表  1  电子束选区熔化与传统工艺制备TiAl合金拉伸性能的对比

    Table  1.   Tensile properties comparison of the TiAl alloys prepared by SEBM and traditional process

    文献材料工艺过程屈服强度 / MPa抗拉强度 / MPa延伸率 / %
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化503
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压+退火(1260 ℃/2 h)3824741.30
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压+退火(1360 ℃/2 h)3734290.80
    [29]Ti‒47Al‒2Cr‒2Nb电子束选区熔化556~6840.31~0.70
    [30]Ti‒47Al‒2Cr‒2Nb电子束选区熔化462~523462~5680.27~0.98
    [31]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压370~90430~4501.00~1.20
    [31]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+退火(1320 ℃/2 h)350~370460~4801.00~1.20
    [32]Ti‒48Al‒2Cr‒2Nb铸造 312±10570±200.48±0.05
    [33]Ti‒48Al‒2Cr‒2Nb铸造5100.4
    [34]Ti‒48Al‒2Cr‒2Nb‒1B锻造(1380 ℃/1 h)+空冷440±15557±151.30±0.10
    下载: 导出CSV
  • [1] Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr, Mo) alloys with γ+σ microstructure at ambient temperature. J Alloys Compd, 2017, 695: 2672 doi: 10.1016/j.jallcom.2016.11.181
    [2] Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling. J Alloys Compd, 2017, 695: 3495 doi: 10.1016/j.jallcom.2016.12.005
    [3] Palomares-García A J, Pérez-Prado M T, Molina-Aldareguia J M. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater, 2017, 123: 102 doi: 10.1016/j.actamat.2016.10.034
    [4] Xu W C, Jin X Z, Huang K, et al. Improvement of microstructure, mechanical properties and hot workability of a TiAl‒Nb‒Mo alloy through hot extrusion. Mater Sci Eng A, 2017, 705: 200 doi: 10.1016/j.msea.2017.08.082
    [5] Ding J, Lin J P, Zhang M H, et al. High-temperature torsion induced gradient microstructures in high Nb‒TiAl alloy. Mater Lett, 2017, 209: 193 doi: 10.1016/j.matlet.2017.07.124
    [6] Shi W T, Wang P, Liu Y D, et al. Crack initiation mechanism and experiment study of process optimization of TiAl alloy formed by selective laser melting. Chin J Rare Met, 2019, 43(4): 349

    石文天, 王朋, 刘玉德, 等. 选区激光熔化TiAl合金裂纹产生机制及工艺优化试验研究. 稀有金属, 2019, 43(4): 349
    [7] Sun X, Yang H C, Shao W S, et al. Study on integrated fabrication of cathode-heater assembly by 3D printing. Powder Metall Technol, 2020, 38(4): 300

    孙信, 杨怀超, 邵文生, 等. 3D打印一体化制备阴极热子组件研究. 粉末冶金技术, 2020, 38(4): 300
    [8] Zhang G X, Liu S F Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312

    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312
    [9] Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components — process, structure and properties. Prog Mater Sci, 2018, 92: 112 doi: 10.1016/j.pmatsci.2017.10.001
    [10] Sharman A R C, Hughes J I, Ridgway K. Characterisation of titanium aluminide components manufactured by laser metal deposition. Intermetallics, 2018, 93: 89 doi: 10.1016/j.intermet.2017.11.013
    [11] Shi X Z, Ma S Y, Liu C M, et al. Parameter optimization for Ti‒47Al‒2Cr‒2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol, 2017, 90: 71 doi: 10.1016/j.optlastec.2016.11.002
    [12] Weisheit A, Mordike B L, Smarsly W, et al. Laser surface remelting and laser surface gas alloying of an intermetallic TiAl alloy. Laser Eng, 2000, 10(1): 63
    [13] Yang Y, Dang M Z, Li W, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting. J Mech Eng, 2020, 56(3): 181 doi: 10.3901/JME.2020.03.181

    杨益, 党明珠, 李伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究. 机械工程学报, 2020, 56(3): 181 doi: 10.3901/JME.2020.03.181
    [14] Gussone J, Hagedorn Y C, Gherekhloo H, et al. Microstructure of γ-titanium aluminide processes by selective laser melting at elevated temperatures. Intermetallics, 2015, 66: 133 doi: 10.1016/j.intermet.2015.07.005
    [15] Liu Z Q, Xu G J, Ma R X, et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding. Chin J Lasers, 2019, 46(3): 146

    刘占起, 徐国建, 马瑞鑫, 等. 激光同轴送粉增材制造TiAl合金的性能. 中国激光, 2019, 46(3): 146
    [16] Liu Z Q, Wang W B, Ma R X, et al. Microstructure and properties of γ-TiAl alloy fabricated by laser melting deposition. Rare Met Mater Eng, 2020, 49(6): 1925

    刘占起, 王文博, 马瑞鑫, 等. 激光熔化沉积制造γ-TiAl合金的组织与性能. 稀有金属材料与工程, 2020, 49(6): 1925
    [17] Liu Z Q, Ma R X, Wang W B, et al. Effect of substrate material on the microstructure, texture, phase and microhardness of a Ti‒48Al‒2Cr‒2Nb alloy processed by laser melting deposition. Rare Met Mater Eng, 2020, 49(7): 2262

    刘占起, 马瑞鑫, 王文博, 等. 基板材料对激光熔化沉积制造Ti‒48Al‒2Cr‒2Nb合金组织、织构、相和显微硬度的影响. 稀有金属材料与工程, 2020, 49(7): 2262
    [18] Liu Z Q, Ma R X, Xu G J, et al. Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition. Trans Nonferrous Met Soc China, 2020, 30(4): 917 doi: 10.1016/S1003-6326(20)65265-7
    [19] Zhang J S, Cheng X, Zhang S Q, et al. Oxidation performance of Ti‒48Al‒2Nb‒2Cr intermetallic compounds prepared by laser additive manufacturing. Chin J Lasers, 2018, 45(4): 146

    张俊生, 程序, 张述泉, 等. 激光增材制造Ti‒48Al‒2Nb‒2Cr金属间化合物氧化性能. 中国激光, 2018, 45(4): 146
    [20] Li W, Liu J, Wen S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting. Mater Charact, 2016, 113: 125 doi: 10.1016/j.matchar.2016.01.012
    [21] Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. J Alloys Compd, 2016, 688: 626 doi: 10.1016/j.jallcom.2016.07.206
    [22] Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting. Scr Mater, 2016, 118: 13 doi: 10.1016/j.scriptamat.2016.02.022
    [23] Franzén S F. Titanium Aluminide Manufactured by Electron Beam Melting [Dissertation]. Gothenburg: Chalmers University of Technology, 2010
    [24] Milberg J, Sigl M. Electron beam sintering of metal powder. Prod Eng, 2008, 2(2): 117 doi: 10.1007/s11740-008-0088-2
    [25] Schwerdtfeger J, Körner C. Selective electron beam melting of Ti‒48Al‒2Cr‒2Nb: Microstructure and aluminium loss. Intermetallics, 2014, 49: 29 doi: 10.1016/j.intermet.2014.01.004
    [26] Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater, 2010, 58(5): 1887 doi: 10.1016/j.actamat.2009.11.032
    [27] Chen W, Yang Y, Liu L L, et al. Microstructure control and tensile properties of EBM γ-TiAl. Aeronaut Manuf Technol, 2017(Suppl 1): 37

    陈玮, 杨洋, 刘亮亮, 等. 电子束增材制造γ-TiAl显微组织调控与拉仲性能研究. 航空制造技术, 2017(增刊1): 37
    [28] Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti‒47Al‒2Cr‒2Nb alloy fabricated by selective electron beam melting. J Alloys Compd, 2018, 750: 617 doi: 10.1016/j.jallcom.2018.03.343
    [29] Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti‒47Al‒2Cr‒2Nb alloy fabricated by selective electron beam melting. Mater Sci Eng A, 2018, 713: 195 doi: 10.1016/j.msea.2017.12.020
    [30] Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti‒47Al‒2Cr‒2Nb alloy produced by selective electron beam melting. J Alloys Compd, 2018, 766: 450 doi: 10.1016/j.jallcom.2018.07.025
    [31] Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti‒48Al‒2Cr‒2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics, 2011, 19(6): 776 doi: 10.1016/j.intermet.2010.11.017
    [32] Han J C, Xiao S L, Tian J, et al. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met, 2016, 35(1): 26 doi: 10.1007/s12598-015-0626-y
    [33] Bao C L, Xie H S, Zhao J, et al. Effects of HIP on microstructure and mechanical properties of cast Ti‒48Al‒2Cr‒2Nb alloy. Foundry, 2017, 66(1): 64 doi: 10.3969/j.issn.1001-4977.2017.01.014

    包春玲, 谢华生, 赵军, 等. 热等静压处理对铸造Ti‒48Al‒2Cr‒2Nb合金组织和力学性能的影响. 铸造, 2017, 66(1): 64 doi: 10.3969/j.issn.1001-4977.2017.01.014
    [34] Hu D, Godfrey A, Blenkinsop P A, et al. Processing-property-microstructure relationships in TiAl-based alloys. Metall Mater Trans A, 1998, 29(13): 919 doi: 10.1007/s11661-998-1000-6
    [35] Sun S J. TiAl alloy turbine blade produced by additive manufacturing method applied to aircraft engine. Powder Metall Ind, 2015, 25(1): 65

    孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65
    [36] Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater Sci Eng A, 2015, 631: 230 doi: 10.1016/j.msea.2015.02.051
    [37] Ma Y, Cuiuri D, Li H J, et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater Sci Eng A, 2016, 657: 86 doi: 10.1016/j.msea.2016.01.060
    [38] Ma Y, Cuiuri D, Hoye N, et al. Effects of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding. J Mater Res, 2014, 29(17): 2066 doi: 10.1557/jmr.2014.203
    [39] Wang J, Pan Z X, Wei L L, et al. Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic. Addit Manuf, 2019, 27: 236
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  795
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回