金属增材制造技术在核工业领域的应用与发展

马青原 杜沛南 彭英博 张瑞谦 张伟

马青原, 杜沛南, 彭英博, 张瑞谦, 张伟. 金属增材制造技术在核工业领域的应用与发展[J]. 粉末冶金技术, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
引用本文: 马青原, 杜沛南, 彭英博, 张瑞谦, 张伟. 金属增材制造技术在核工业领域的应用与发展[J]. 粉末冶金技术, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
MA Qing-yuan, DU Pei-nan, PENG Ying-bo, ZHANG Rui-qian, ZHANG Wei. Application and development of metal additive manufacturing technology in the field of nuclear industry[J]. Powder Metallurgy Technology, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
Citation: MA Qing-yuan, DU Pei-nan, PENG Ying-bo, ZHANG Rui-qian, ZHANG Wei. Application and development of metal additive manufacturing technology in the field of nuclear industry[J]. Powder Metallurgy Technology, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005

金属增材制造技术在核工业领域的应用与发展

doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
详细信息
    通讯作者:

    E-mail: waycsu@csu.edu.cn

  • 中图分类号: TF124;TL35

Application and development of metal additive manufacturing technology in the field of nuclear industry

More Information
  • 摘要: 增材制造能够制备任意复杂形状的零件,具有快速、高效、经济、全智能化和全柔性化制造的优势。本文总结了国内外典型的金属增材制造技术,介绍了金属增材制造技术在核工业领域的应用,梳理了增材制造核材料产品的性能表现,并以实际案例证明了金属增材制造技术在核工业领域的优势。本文结合革新性反应堆技术在核材料中的应用背景,展望了增材制造技术在核材料领域的发展趋势。
  • 图  1  增材制造涉核材料研究体系

    Figure  1.  Research system of the nuclear materials prepared by the additive manufacturing

    图  2  选区激光熔化V‒6Cr‒6Ti零件应力–应变曲线[2]

    Figure  2.  Stress-strain curves of the V‒6Cr‒6Ti parts prepared by SLM[2]

    图  3  316L不锈钢样品侧表面底部(a)和顶部(b)微观组织中均存在球形氧化硅纳米夹杂物[4]

    Figure  3.  Spherical silicon oxide nano-inclusions on the bottom (a) and top (b) of the 316L stainless steel surface[4]

    图  4  增材制造压力容器试件[7]

    Figure  4.  Pressure vessel piece prepared by additive manufacturing[7]

    图  5  德国通快TruLaser Cell 7040(a)[8]和快速分析和制造推进技术项目技术概况(b)[12]

    Figure  5.  TruLaser cell 7040 of the Trumpf Group (a)[8] and the overview of RAMPT project technology (b)[12]

    图  6  粘结剂喷射增材制造技术原理[13]

    Figure  6.  Principle of the binder jetting additive manufacturing technology[13]

    图  7  增材制造潜艇原型

    Figure  7.  Submarine prototype by additive manufacturing

    图  8  缩比叶轮产品[16]

    Figure  8.  Product of the scaled impeller[16]

    图  9  增材制造主泵折流管(a)[23];Sustainable Engine Systems生产的热交换器(b)[24]

    Figure  9.  Additive manufacturing main pump baffle (a)[23] ; the heat exchanger by Sustainable Engine Systems (b)[24]

    图  10  激光增材技术制备的防屑板[27]

    Figure  10.  Anti-debris plate prepared by the laser additive manufacturing technology[27]

    图  11  法兰面电弧增材再制造过程前后对比[28]:(a)修复前;(b)修复后

    Figure  11.  Comparison of the flange surface prepared by the additive remanufacturing process[28]: (a) before repair ; (b) after repair

    图  12  双金属腔室覆层[12]

    Figure  12.  Bimetallic chamber cladding[12]

    表  1  典型增材制造工艺对比[14]

    Table  1.   Comparison of the typical additive manufacturing processes[14]

    选区激光熔化(SLM)电弧熔丝增材制造(WAAM)定向能量沉积(DED)粘结剂喷射成形(BJAM)
    常用
    材料
    不锈钢、Ti合金、Al合金、CoCr合金、Cu合金、
    高温合金等
    Ti合金、高温合金、高强钢、不锈钢和高强Al合金等不锈钢、Ti合金、Al合金、CoCr合金、高温合金等金属粉末(W、CoCr合金、CuSn合金等)、陶瓷粉末、砂子
    优点成形精度高且力学性能良好,可靠性高,控制灵活且反应速度快,未熔粉末
    可循环使用
    成形尺寸大、设备简单、制造成本低、快速高效、可以实现无损、加工大规模生产尺寸不受限,可实现对受损零件定向组织的整修,具有广泛适用性具有工业级效率、设备成本低、无需额外支撑、可实现粉末颗粒间的冶金结合
    缺点成本昂贵,限制打印
    零件的尺寸
    成形精度低、需要后续的锻造机加工成形精度低,须经过后续机械加工成品力学性能不佳
    应用航空航天、模具、汽车等领域中小型形状复杂难以加工的构件等,例如燃油喷嘴、涡轮叶片等航空航天、矿冶机械等领域中大型结构复杂构件航空航天、石油能源、矿冶等领域的金属零件、大型金属构件、表面增强涂层航空航天、能源、铸造、医疗等领域中非承力金属零件、砂模、铸造型芯等
    下载: 导出CSV
  • [1] Zhao F Y, He X M, Wang X J, et al. The basic discussion on 3D printing technology for nuclear power design and manufacture. Mach Des Res, 2016, 32(1): 88

    赵飞云, 贺小明, 王煦嘉, 等. 3D打印技术对核电设计与制造影响的基本思考. 机械设计与研究, 2016, 32(1): 88
    [2] Yang J L. Selective laser melting additive manufacturing of advanced nuclear materials V–6Cr–6Ti. Mater Lett, 2017, 209: 268 doi: 10.1016/j.matlet.2017.08.014
    [3] Yang J L, Li J F. Fabrication and analysis of vanadium-based metal powders for selective laser melting. J Miner Mater Charact Eng, 2018, 6: 50
    [4] Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater, 2016, 470: 170 doi: 10.1016/j.jnucmat.2015.12.034
    [5] Ma C L. Titanium pressure vessel for space exploration built successfully using the wire + arc additive manufacturing process. China Titanium Ind, 2019(2): 37

    马晨璐. 欧洲采用电弧增材制造工艺成功制造空间探索钛压力容器. 中国钛业, 2019(2): 37
    [6] Yuan H, He G N, Li L, et al. Overview of the development and application of 3D printing technology in the field of nuclear power. Sci Technol Vision, 2020(17): 118

    袁宏, 何戈宁, 李磊, 等. 3D打印技术在核电领域的发展应用情况综述. 科技视界, 2020(17): 118
    [7] Zhang Y B. 3D printing composes the legend of small reactor—notes on the development of 3D printed specimens of modular small reactor pressure vessel cylinders. China Nucl Ind, 2016(12): 22

    张亚斌. 3D打印谱写小堆传奇—模块式小型堆压力容器筒体3D打印试件研发小记. 中国核工业, 2016(12): 22
    [8] Andreasch W, Huber R, Mock D. Two concentric fiber diameters in one laser light cable. Laser Tech J, 2011, 8(1): 38 doi: 10.1002/latj.201090106
    [9] Schopphoven T, Pirch N, Mann S, et al. Statistical/numerical model of the powder-gas jet for extreme high-speed laser material deposition. Coatings, 2020, 10(4): 416 doi: 10.3390/coatings10040416
    [10] Wang B, Zhang S Q, Wang H M. Rapidly solidified microstructure of Ti60 alloy produced by laser rapid forming process. Trans Mater Heat Treat, 2008, 29(6): 86

    王彬, 张述泉, 王华明. 激光熔化沉积高温钛合金Ti60快速凝固组织. 材料热处理学报, 2008, 29(6): 86
    [11] Zhang W D, Liu W C. Leading the Light Manufacturing 4.0 Era. Tianjin: Binhai Times, 2018

    张文弟, 刘炜晨. 领跑光制造4.0时代. 天津: 滨海时报, 2018
    [12] Gradl P R, Protz C, Fikes J, et al. Lightweight thrust chamber assemblies using multi-alloy additive manufacturing and composite overwrap // AIAA Propulsion and Energy 2020 Forum. Online, 2020: 3787
    [13] 3D Science Valley. Metal 3D printing: laser melting and jetting technology-advantages and limitations[J/OL]. 3D Science Valley [2017-11-24]. http://www.3dsciencevalley.com/?p=10707,2017/11/24

    3D Science Valley. 金属3D打印: 激光熔化与喷射技术—优点和局限[J/OL]. 3D Science Valley [2017-11-24]. http://www.3dsciencevalley.com/?p=10707,2017/11/24
    [14] Ren H J, Zhou G N, Cong B Q, et al. Development and application of metal additive manufacturing in aerospace field. Aeronaut Manuf Technol, 2020, 63(10): 72

    任慧娇, 周冠男, 从保强, 等. 增材制造技术在航空航天金属构件领域的发展及应用. 航空制造技术, 2020, 63(10): 72
    [15] Chen J, Kang K, Feng J, et al. Research progress on the corrosion behavior of structural steels of pressurized water reactor nuclear power plant. J Xihua Univ Nat Sci, 2020, 39(3): 104 doi: 10.12198/j.issn.1673-159X.3616

    陈君, 康凯, 冯钜, 等. 压水堆核电站结构材料的腐蚀行为研究进展. 西华大学学报(自然科学版), 2020, 39(3): 104 doi: 10.12198/j.issn.1673-159X.3616
    [16] Chen X J, Liu Y Z, Zhang F. Research and manufacturer of reactor coolant pump testing impeller based on 3D printing technology. Mach Des Manuf, 2017(Suppl 1): 67

    陈兴江, 刘彦章, 张峰. 基于3D打印技术的主泵试验用叶轮研制. 机械设计与制造, 2017(增刊1): 67
    [17] Lu B H. Intelligent manufacturing and 3D printing promote "Made in China 2025". High Technol Commer, 2018(11): 22

    卢秉恒. 智能制造与3D打印推动“中国制造2025”. 高科技与产业化, 2018(11): 22
    [18] Wen Y, Lu C, Liu W X. Enlightenment from Oak Ridge National Laboratory on the development of reactor technology. Sci Technol Vision, 2019(32): 98

    文彦, 卢川, 刘文兴. 美国橡树岭国家实验室对我国反应堆技术发展的启示. 科技视界, 2019(32): 98
    [19] CNNPN. Oak Ridge National Laboratory (ORNL) has made a breakthrough in 3D printing of nuclear reactor cores[J/OL]. CNNPN (2020-05-12) [2020-11-01].https://www.cnnpn.cn/article/19410.html

    中国核电网. 美国橡树岭国家实验室(ORNL)核电反应堆核心3D打印技术取得阶段性突破[J/OL]. 中国核电网 (2020-05-12)[2020-11-01].https://www.cnnpn.cn/article/19410.html
    [20] Ren L L, Liu J P, Feng Y C. Preliminary study on additive manufacturing process of main pump in nuclear power plant. MW Met Form, 2017(4): 55

    任丽丽, 刘金平, 冯英超. 核电站主泵增材制造工艺初步研究. 金属加工(热加工), 2017(4): 55
    [21] Pinkerton A J. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition. J Phys D:Appl Phys, 2007, 40(23): 7323 doi: 10.1088/0022-3727/40/23/012
    [22] Wang X Y. 3D Printing and Industrial Manufacturing. Beijing: China Machine Press, 2019

    王晓燕. 3D打印与工业制造. 北京: 机械工业出版社, 2019
    [23] Tan L, Zhao J G. Analysis on the present research situation and application prospect of metal 3D printing technology in nuclear power field. Electr Weld Mach, 2019, 49(4): 339

    谭磊, 赵建光. 金属3D打印技术核电领域研究现状及应用前景分析. 电焊机, 2019, 49(4): 339
    [24] Hislop Watson D. Pin Fin Heat Exchanger: American Patent, US2018266773. 2018-09-20
    [25] Thompson S M, Aspin Z S, Shamsaei N, et al. Additive manufacturing of heat exchangers: a case study on a multi-layered Ti–6Al–4V oscillating heat pipe. Add Manuf, 2015, 8: 163
    [26] Yao W J. Siemens developed 3D printed combustion components. China Titanium Ind, 2018(4): 49

    姚文静. 西门子生产3D打印燃烧组件. 中国钛业, 2018(4): 49
    [27] Zhang L Y, Qin G P. Research on laser additive manufacturing technology for the anti debris plate of fuel assembly. Electr Weld Mach, 2020, 50(7): 104 doi: 10.7512/j.issn.1001-2303.2020.07.16

    张丽英, 秦国鹏. 核燃料防屑板的激光增材制造技术研究. 电焊机, 2020, 50(7): 104 doi: 10.7512/j.issn.1001-2303.2020.07.16
    [28] Wang K, Chen Y J, Lu L, et al. Research on on-line arc additive remanufacturing technology for nuclear grade flange surface. MW Met Form, 2020(7): 2

    王凯, 陈英杰, 鲁立, 等. 核级法兰面在线电弧增材再制造技术研究. 金属加工(热加工), 2020(7): 2
    [29] Rosales J, van Rooyen I J, Parga C J. Characterizing surrogates to develop an additive manufacturing process for U3Si2 nuclear fuel. J Nucl Mater, 2019, 518: 117 doi: 10.1016/j.jnucmat.2019.02.026
    [30] Muhammad F, Majid A. Reactivity feedback coefficients of a material test research reactor fueled with high-density U3Si2 dispersion fuels. Nucl Eng Des, 2008, 238(10): 2583 doi: 10.1016/j.nucengdes.2008.05.002
    [31] Zhang G M. Intelligent manufacturing and intelligent agriculture—intelligent manufacturing based on additive thinking. J World Educ, 2018, 31(21): 77

    张国明. 智能制造与智慧农业—基于增材思维的智能制造. 世界教育信息, 2018, 31(21): 77
    [32] Ge Z H, Chen H, Lei C R. Research on three-dimensional printing modeling visualization of multi-material parts. Laser Optoelectron Prog, 2020, 57(23): 231403 doi: 10.3788/LOP57.231403

    葛正浩, 陈浩, 雷聪蕊. 多材料零件三维打印建模可视化研究. 激光与光电子学进展, 2020, 57(23): 231403 doi: 10.3788/LOP57.231403
    [33] Yan M, Wang P F, Hong X F, et al. Evaluation on I-SCC properties of zirconium cladding. Nucl Power Eng, 2017, 38(5): 138

    闫萌, 王朋飞, 洪晓峰, 等. 锆合金包壳I-SCC性能评价. 核动力工程, 2017, 38(5): 138
    [34] Yang J Q, Li N, Shi J P. 3D Printing Technology of Heterogeneous Materials. Wuhan: Huazhong University of Science and Technology Press, 2019

    杨继全, 李娜, 施建平, 等. 异质材料3D打印技术. 武汉: 华中科技大学出版社, 2019
    [35] Wu X J, Liu W J, Wang T R. Heterogeneous materials object modeling for 3D CAD part. Chin J Mech Eng, 2004, 40(5): 111 doi: 10.3321/j.issn:0577-6686.2004.05.023

    吴晓军, 刘伟军, 王天然. 三维CAD零件异质材料建模方法. 机械工程学报, 2004, 40(5): 111 doi: 10.3321/j.issn:0577-6686.2004.05.023
    [36] Garcia D, Jones M E, Zhu Y H, et al. Mesoscale design of heterogeneous material systems in multi-material additive manufacturing. J Mater Res, 2018, 33(1): 58 doi: 10.1557/jmr.2017.328
    [37] Gradl P R, Protz C, Cooper K, et al. GRCop-42 development and hot-fire testing using additive manufacturing powder bed fusion for channel-cooled combustion chambers // AIAA Propulsion and Energy 2020 Forum. AIAA, Indiana, USA. 2019: 4228
    [38] Onuike B, Bandyopadhyay A. Bond strength measurement for additively manufactured Inconel 718-GRCop84 copper alloy bimetallic joints. Add Manuf, 2019, 27: 576
    [39] Tian X Y, Yin M, Li D C. Digital design and fabrication of metamaterials structure driven by microwave transmittance performance and 3D printing. Sci Sin Inf, 2015, 45(2): 224 doi: 10.1360/N112014-00240

    田小永, 殷鸣, 李涤尘. 功能驱动的超材料结构数字化设计与3D打印. 中国科学:信息科学, 2015, 45(2): 224 doi: 10.1360/N112014-00240
    [40] Liu S, Wang Y, Liu C S. Application of laser melting deposition technique in preparation of functionally gradient materials. Aeronaut Manuf Technol, 2018, 61(17): 47

    刘帅, 王阳, 刘常升. 激光熔化沉积技术在制备梯度功能材料中的应用. 航空制造技术, 2018, 61(17): 47
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  611
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回