沉淀-转化法制备纤维状复杂草酸镍盐

邬建辉 谌思磊 陈小松 王翊民 严润

邬建辉, 谌思磊, 陈小松, 王翊民, 严润. 沉淀-转化法制备纤维状复杂草酸镍盐[J]. 粉末冶金技术, 2023, 41(2): 137-142, 148. doi: 10.19591/j.cnki.cn11-1974/tf.2020110007
引用本文: 邬建辉, 谌思磊, 陈小松, 王翊民, 严润. 沉淀-转化法制备纤维状复杂草酸镍盐[J]. 粉末冶金技术, 2023, 41(2): 137-142, 148. doi: 10.19591/j.cnki.cn11-1974/tf.2020110007
WU Jianhui, CHEN Silei, CHEN Xiaosong, WANG Yimin, YAN Run. Preparation of fiber-like complex nickel oxalate by precipitation-transformation method[J]. Powder Metallurgy Technology, 2023, 41(2): 137-142, 148. doi: 10.19591/j.cnki.cn11-1974/tf.2020110007
Citation: WU Jianhui, CHEN Silei, CHEN Xiaosong, WANG Yimin, YAN Run. Preparation of fiber-like complex nickel oxalate by precipitation-transformation method[J]. Powder Metallurgy Technology, 2023, 41(2): 137-142, 148. doi: 10.19591/j.cnki.cn11-1974/tf.2020110007

沉淀-转化法制备纤维状复杂草酸镍盐

doi: 10.19591/j.cnki.cn11-1974/tf.2020110007
详细信息
    通讯作者:

    E-mail: john13808482782@163.com

  • 中图分类号: TG146.1

Preparation of fiber-like complex nickel oxalate by precipitation-transformation method

More Information
  • 摘要: 以六水合硫酸镍为原料、两水合草酸为沉淀剂制备了草酸镍沉淀,再以乙二胺为配位剂配位转化草酸镍,合成了纤维状复杂草酸镍盐前驱体粉末。利用X射线衍射分析、扫描电子显微镜观察、傅里叶变换红外光谱分析及热重‒差热分析表征了前驱体物相组成及显微形貌,讨论了制备工艺参数对前驱体尺寸及形貌的影响,并得出了最佳工艺参数。结果表明,沉淀-转化法制备的镍盐前驱体结构中含有乙二胺成分,其晶体形貌呈纤维状,组成分布均匀。最佳工艺参数为正加料方式,初始pH 7.5,Ni2+浓度0.6 mol·L‒1,反应温度65 ℃,表面活性剂(PVP)0.4 g,在此条件下可制得分散性良好的纤维状复杂草酸镍盐前驱体,其最高长径比可达55。
  • 图  1  镍盐前驱体X射线衍射图谱

    Figure  1.  X-ray diffraction patterns of the nickel salt precursors

    图  2  复杂镍盐前驱体的红外光谱图

    Figure  2.  Infrared spectra of the complex nickel salt precursors

    图  3  复杂镍盐前驱体的热重‒差热分析曲线

    Figure  3.  TG‒DTA curves of the complex nickel salt precursors

    图  4  不同加料方式制备的复杂镍盐前驱体显微形貌:(a)正加料;(b)反加料

    Figure  4.  SEM images of the complex nickel salt precursors prepared by the different feeding methods: (a) positive feeding; (b) negative feeding

    图  5  不同pH条件下制备的复杂镍盐前驱体显微形貌:(a)pH=4.8;(b)pH=6.7;(c)pH=7.0;(d)pH=7.5;(e)pH=8.0

    Figure  5.  SEM images of the complex nickel salt precursors prepared at the different pH: (a) pH=4.8; (b) pH=6.7; (c) pH=7.0; (d) pH=7.5; (e) pH=8.0

    图  6  不同Ni2+浓度下制备复杂镍盐前驱体显微形貌:(a)0.2 mol·L‒1;(b)0.4 mol·L‒1;(c)0.6 mol·L‒1;(d)0.8 mol·L‒1

    Figure  6.  SEM images of the complex nickel salt precursors prepared under the different Ni2+ concentrations: (a) 0.2 mol·L‒1; (b) 0.4 mol·L‒1; (c) 0.6 mol·L‒1; (d) 0.8 mol·L‒1

    图  7  不同温度下制备复杂镍盐前驱体显微形貌:(a)55 ℃;(b)65 ℃;(c)75 ℃

    Figure  7.  SEM images of the complex nickel salt precursors prepared at the different temperature: (a) 55 ℃; (b) 65 ℃; (c) 75 ℃

    图  8  不同PVP加入量下制备复杂镍盐前驱体显微形貌:(a)未加PVP;(b)PVP=0.2 g;(c)PVP=0.4 g;(d)PVP=0.6 g

    Figure  8.  SEM images of the complex nickel salt precursors prepared with the different amounts of PVP: (a) without PVP; (b) PVP=0.2 g; (c) PVP=0.4; (d) PVP=0.6 g

  • [1] Mongkolchart W, Santiwong P, Chintavalakorn R, et al. Effect of surface treatment on physical and mechanical properties of nickel-titanium orthodontic archwires by fine particle shot peening method. Key Eng Mater, 2019, 801: 33 doi: 10.4028/www.scientific.net/KEM.801.33
    [2] Jiang Y, Chen J Z, Liu Y, et al. Progress of multi-layer ceramic capacitor (MLC). J Funct Mater Devices, 2003, 9(1): 100 doi: 10.3969/j.issn.1007-4252.2003.01.023

    蒋渝, 陈家钊, 刘颖, 等. 多层片式陶瓷电容器MLC研发进展. 功能材料与器件学报, 2003, 9(1): 100 doi: 10.3969/j.issn.1007-4252.2003.01.023
    [3] Sada T, Fujikawa N. Analysis of insulation resistance degradation in Ni-BaTiO3 multilayer ceramic capacitors under highly accelerated life test. Jpn J Appl Phys, 2017, 56(Suppl 10): 10PB04
    [4] Wang P, Xu H R, Zhu G S, et al. An efficient method to achieve MLCC miniaturization and ensure its reliability. J Mater Sci Mater Electron, 2017, 28(5): 4102 doi: 10.1007/s10854-016-6029-5
    [5] Qi H P, Cao H L, Huang Y D. Synthesis of flowerlike nickel particles and their microwave absorbing properties. J Cent South Univ, 2014, 21(8): 3007 doi: 10.1007/s11771-014-2269-9
    [6] Zaitsev A Y, Wilkinson D S, Weatherly G C, et al. The preparation of highly porous structures from filamentary nickel powders. J Power Sources, 2003, 123(2): 253 doi: 10.1016/S0378-7753(03)00534-2
    [7] Tracey V A. Factors affecting the properties of nickel sintered structures for alkaline batteries. Ind Eng Chem Prod Res Dev, 1982, 21(4): 626 doi: 10.1021/i300008a023
    [8] Oh H J, Jo C H, Yoon C S, et al. Nickel oxalate dihydrate nanorods attached to reduced grapheneoxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Mater, 2016, 8(5): e270 doi: 10.1038/am.2016.59
    [9] Jing L, Yang Q H, Zhang Z. Effects of additives on nickel electrowinning from sulfate system. Trans Nonferrous Met Soc China, 2010, 20(Suppl 1): 97
    [10] Meng L, Qu J K, Xie K Q, et al. Preparation of Ni from nickel laterite leaching solution by anion membrane electrolysis method. Chin J Nonferrous Met, 2015, 25(4): 1093 doi: 10.19476/j.ysxb.1004.0609.2015.04.034

    孟龙, 曲景奎, 谢克强, 等. 采用阴离子膜电解法从红土镍矿常压浸出液中制备金属镍. 中国有色金属学报, 2015, 25(4): 1093 doi: 10.19476/j.ysxb.1004.0609.2015.04.034
    [11] Panigrahi B B, Das K, Godkhindi M M. Dilatometry of ball milled nickel nano powder during non-isothermal sintering. Sci Sinter, 2007, 39(1): 25 doi: 10.2298/SOS0701025P
    [12] Baburaj E G, Hubert K T, Froes F H S. Preparation of Ni powder by mechanochemical process. J Alloys Compd, 1997, 257(1): 146
    [13] Zhou G L, Zhou H J, Yang Y W, et al. Method of removing iron and nickel carbonyl from synthesis gas. J Fuel Chem Technol, 2001, 29(Suppl): 241

    周广林, 周红军, 杨彦伟, 等. 从合成气脱羰基铁、羰基镍的方法. 燃料化学学报, 2001, 29(增刊): 241
    [14] Zhang S Y. Research on the Preparation of Ultrafine Nickel Powder by Chemical Vapor Deposition [Dissertation]. Changsha: Central South University, 2009

    张淑英. 化学气相沉积法制备超细镍粉的研究[学位论文]. 长沙: 中南大学, 2009
    [15] Si J J, Su X L. Preparation of ultrafine spherical nickle powder. Powder Metall Technol, 2021, 39(2): 177 doi: 10.19591/j.cnki.cn11-1974/tf.2019090003

    司佳佳, 苏晓磊. 超细球形镍粉的制备. 粉末冶金技术, 2021, 39(2): 177 doi: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [16] Li L, Du J H, Gan G Y, et al. Study on preparation technology of nickel powder with liquid phase reduction method. Rare Met Mater Eng, 2015, 44(1): 36 doi: 10.1016/S1875-5372(15)30008-4
    [17] Yu Y, Ma H, Tian X X, et al. Synthesis and electromagnetic absorption properties of micro-nano nickel powders prepared with liquid phase reduction method. J Adv Dielect, 2016, 6(3): 1650025 doi: 10.1142/S2010135X16500259
    [18] Wu J H. Study on a New Method for Preparing Special Nickel Powder [Dissertation]. Changsha: Central South University, 2003

    邬建辉. 特种镍粉制备新方法研究[学位论文]. 长沙: 中南大学, 2003
    [19] Wu J H, Liu G, Tao S, et al. Preparation of fibrous nickel powder by precipitation transformation coupled with thermal decomposition. Trans Nonferrous Met Soc China, 2015, 25(8): 2653 doi: 10.1016/S1003-6326(15)63888-2
    [20] Yao Y L. Preparation of Ultrafine FeNi Alloy Powders by Thermal Decomposition Process and Their Microwave Absorbing Properties [Dissertation]. Changsha: Central South University, 2014

    姚永林. 超细FeNi合金粉热分解法制备及其吸波性能研究[学位论文]. 长沙: 中南大学, 2014
  • 加载中
图(8)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  76
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回