固相合成纳米级xSiC/Mg‒5.5Zn‒0.1Y合金组织及力学性能

彭二宝 马骁

彭二宝, 马骁. 固相合成纳米级xSiC/Mg‒5.5Zn‒0.1Y合金组织及力学性能[J]. 粉末冶金技术, 2023, 41(2): 149-153. doi: 10.19591/j.cnki.cn11-1974/tf.2020110009
引用本文: 彭二宝, 马骁. 固相合成纳米级xSiC/Mg‒5.5Zn‒0.1Y合金组织及力学性能[J]. 粉末冶金技术, 2023, 41(2): 149-153. doi: 10.19591/j.cnki.cn11-1974/tf.2020110009
PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. doi: 10.19591/j.cnki.cn11-1974/tf.2020110009
Citation: PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. doi: 10.19591/j.cnki.cn11-1974/tf.2020110009

固相合成纳米级xSiC/Mg‒5.5Zn‒0.1Y合金组织及力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020110009
基金项目: 河南省科技厅科技攻关项目(142102310526);南阳市2019年科技发展计划项目(KJGG008)
详细信息
    通讯作者:

    E-mail: pengerbao11@126.com

  • 中图分类号: TG146.2

Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis

More Information
  • 摘要: 通过固相合成的方法制备纳米级SiC颗粒增强Mg‒5.5Zn‒0.1Y合金,研究了SiC颗粒质量分数对Mg‒5.5Zn‒0.1Y合金组织及力学性能的影响。结果表明:随着SiC颗粒质量分数的提高,SiC颗粒分布状态变得更团聚,产生了明显的钉扎作用,具有显著细化晶粒的效果。SiC颗粒附近区域产生了大量位错,为添加质量分数2.0%SiC颗粒的Mg‒5.5Zn‒0.1Y合金再结晶形核提供有利条件,促进晶粒细化。提高SiC颗粒质量分数,合金硬度增大,加入质量分数2.0%SiC颗粒时,合金获得了最高硬度(HV 82)。提高SiC颗粒质量分数,降低了合金裂纹数量,SiC颗粒和Mg‒5.5Zn‒0.1Y合金发生界面脱粘现象,形成裂纹源并引起断裂。提高SiC颗粒质量分数能够使合金获得更高的强度与伸长率。
  • 图  1  SiC颗粒微观形貌

    Figure  1.  Microstructure of the SiC particles

    图  2  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金显微形貌:(a)0;(b)0.5%;(c)1.0%;(d)2.0%

    Figure  2.  SEM images of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction: (a) 0; (b) 0.5%; (c) 1.0%; (d) 2.0%

    图  3  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金显微形貌(a)、能谱分析(b)及线扫描结果(c)

    Figure  3.  SEM image (a), energy spectrum analysis (b), and line scan results (c) of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction

    图  4  添加质量分数2.0%SiC颗粒Mg‒5.5Zn‒0.1Y合金透射电子显微形貌

    Figure  4.  Transmission electron microscope images of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in the mass fraction of 2.0%

    图  5  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金断口显微形貌:(a)0;(b)0.5%;(c)1.0%;(d)2.0%

    Figure  5.  Fracture SEM images of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction: (a) 0%; (b) 0.5%; (c) 1.0%; (d) 2.0%

    表  1  SiC颗粒物理性能

    Table  1.   Physical properties of the SiC particles

    密度 / (g∙cm‒3)熔点 / K弹性模量 / GPa热膨胀系数 / (106·K‒1)导热系数 / (W∙m‒1∙K‒1)纯度 / %平均粒度 / μm
    3.2526504204.5100~20099.550
    下载: 导出CSV

    表  2  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金平均晶粒尺寸

    Table  2.   Average grain size of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction

    SiC颗粒质量分数 / %00.51.02.0
    平均粒径 / μm35.628.626.521.4
    下载: 导出CSV

    表  3  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金维氏硬度

    Table  3.   Vickers hardness of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction

    SiC颗粒质量分数 / %00.51.02.0
    硬度,HV62.669.276.182.8
    下载: 导出CSV

    表  4  添加不同质量分数SiC颗粒Mg‒5.5Zn‒0.1Y合金强度及伸长率

    Table  4.   Strength and elongation of the Mg‒5.5Zn‒0.1Y alloys doped by SiC particles in different mass fraction

    SiC颗粒质量分数 / %σb / MPaσ0.2 / MPaδ / %
    02461663.84
    0.52631826.52
    1.02811967.25
    2.02942088.33
    下载: 导出CSV
  • [1] Shen S D, Chen D, Chen Z H, et al. Phase composition and interface of rapidly solidified/powder metallurgy AZ91/SiCp Mg-based composite material. Chin J Nonferrous Met, 2008, 18(7): 1185

    盛绍顶, 陈鼎, 陈振华, 等. 快速凝固/粉末冶金AZ91/SiCp镁基复合材料的相组成及界面. 中国有色金属学报, 2008, 18(7): 1185
    [2] Ren F Y, Xu L, Li C Y, et al. Research progress in the preparation of particle-reinforced magnesium matrix composites by powder metallurgy. Powder Metall Technol, 2020, 38(1): 66 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.010

    任峰岩, 许磊, 历长云, 等. 粉末冶金法制备颗粒增强镁基复合材料的研究进展. 粉末冶金技术, 2020, 38(1): 66 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.010
    [3] Guan F, Cheng J L. Property modification of ZK60 Al‒Mg alloy by Y-doping. Chin J Vac Sci Technol, 2020, 40(10): 978

    关锋, 程军丽. Y添加量对齿轮用真空感应熔炼ZK60合金组织及拉伸性能的影响. 真空科学与技术学报, 2020, 40(10): 978
    [4] Peng P, Tang A T, She J, et al. Ultrafine grained magnesium alloys research: status quo and future directions. Mater Rep, 2019, 33(9): 1526 doi: 10.11896/cldb.18010063

    彭鹏, 汤爱涛, 佘加, 等. 超细晶镁合金的研究现状及展望. 材料导报, 2019, 33(9): 1526 doi: 10.11896/cldb.18010063
    [5] Yu H H, Guo Z M, Luo J, et al. Effect of sintering temperature on the microstructure and properties of SiO2 particles strengthening AZ91 magnesium alloy. Powder Metall Technol, 2014, 32(5): 338

    于海华, 郭志猛, 罗骥, 等. 烧结温度对SiO2颗粒强化AZ91镁合金组织与性能的影响. 粉末冶金技术, 2014, 32(5): 338
    [6] Sun X F, Wang C J, Deng K K, et al. Aging behavior of AZ91 matrix influenced by 5 μm SiCp: Investigation on the microstructure and mechanical properties. J Alloys Compd, 2017, 727(5): 1263
    [7] Wu G H, Xiao H, Zhou H Z, et al. Anisotropy of warm-temperature tensile properties of extruded AZ31 magnesium alloy. Chin J Nonferrous Met, 2017, 27(1): 57

    吴国华, 肖寒, 周慧子, 等. 挤压态AZ31镁合金温热拉伸性能的各向异性. 中国有色金属学报, 2017, 27(1): 57
    [8] Paramsothy M, Chan J, Kwok R, et al. Al2O3 nanoparticle addition to commercial magnesium alloys: multiple beneficial effects. Nanomaterials, 2012, 2(2): 147 doi: 10.3390/nano2020147
    [9] Habibnejad-Korayem M, Mahmudi R, Poole W J. Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater Sci Eng A, 2013, 567(4): 89
    [10] Wen L H, Ji Z S, Xu H Y, et al. Aging strengthening of Mg‒Nd‒Zn‒Zr magnesium alloy prepared by solid recycling process. Chin J Nonferrous Met, 2016, 26(7): 1408

    文丽华, 吉泽升, 许红雨, 等. 固相再生Mg‒Nd‒Zn‒Zr镁合金的时效强化. 中国有色金属学报, 2016, 26(7): 1408
    [11] Wu S Y, Ji Z S, Hu M, et al. Microstructure and mechanical properties of AZ31B magnesium alloy prepared by solid state recycling. Rare Met Mater Eng, 2018, 47(3): 736 doi: 10.1016/S1875-5372(18)30101-2

    武淑艳, 吉泽升, 胡明, 等. 固相再生AZ31B镁合金的组织与力学性能. 稀有金属材料与工程, 2018, 47(3): 736 doi: 10.1016/S1875-5372(18)30101-2
    [12] Wen L H, Ji Z S, Ning H Y, et al. Effect of extruding times on microstructure and mechanical properties of ZM6‒Ce magnesium alloy. Rare Met Mater Eng, 2015, 44(9): 2305

    文丽华, 吉泽升, 宁慧燕, 等. 固相合成道次对ZM6‒Ce镁合金组织和性能的影响. 稀有金属材料与工程, 2015, 44(9): 2305
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  49
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回