表面处理对316L不锈钢粉末注射成型性能的影响

陈泽旭 吴盾 刘春林 曹峥 成骏峰

陈泽旭, 吴盾, 刘春林, 曹峥, 成骏峰. 表面处理对316L不锈钢粉末注射成型性能的影响[J]. 粉末冶金技术, 2023, 41(4): 289-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110011
引用本文: 陈泽旭, 吴盾, 刘春林, 曹峥, 成骏峰. 表面处理对316L不锈钢粉末注射成型性能的影响[J]. 粉末冶金技术, 2023, 41(4): 289-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110011
CHEN Zexu, WU Dun, LIU Chunlin, CAO Zheng, CHENG Junfeng. Effect of surface treatment on powder injection molding performance of 316L stainless steel powders[J]. Powder Metallurgy Technology, 2023, 41(4): 289-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110011
Citation: CHEN Zexu, WU Dun, LIU Chunlin, CAO Zheng, CHENG Junfeng. Effect of surface treatment on powder injection molding performance of 316L stainless steel powders[J]. Powder Metallurgy Technology, 2023, 41(4): 289-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110011

表面处理对316L不锈钢粉末注射成型性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020110011
详细信息
    通讯作者:

    E-mail: chunlin@cczu.edu.cn

  • 中图分类号: TF124

Effect of surface treatment on powder injection molding performance of 316L stainless steel powders

More Information
  • 摘要: 以聚乙二醇/环氧树脂(PEG-EP)为粉末表面改性剂,聚甲醛系树脂(POM)为粘结剂体系,混炼制备316L不锈钢粉末注射成型喂料,并通过硝酸催化脱脂后烧结得到316L烧结样品。通过傅里叶红外光谱仪、扫描电子显微镜、接触角测量仪、旋转流变仪、万能材料试验机、金相显微镜、碳硫分析仪、显微硬度计等研究了PEG-EP对316L不锈钢粉末的包覆效果以及PEG-EP表面处理对316L不锈钢粉末注射成型喂料和烧结样品性能的影响。结果表明,PEG-EP成功包覆在316L粉末表面,改善了316L不锈钢粉末与聚甲醛的界面相容性,提高了喂料流动的性能、生坯的力学性能和烧结样品的力学性能及硬度。当添加PEG-EP质量分数为0.662%、粉末装载量(体积分数)为63%时,316L注射生坯的拉伸强度、断裂伸长率、弯曲强度分别为10.57 MPa、8.38%、21.24 N·(mm2)−1;烧结样品晶粒尺寸为50.8 μm,最大抗拉强度和维氏硬度为688 MPa和HV 151,烧结样品的综合性能最佳。
  • 图  1  表面处理、粉末注射成型喂料及烧结试样制备流程

    Figure  1.  Preparation process of the surface treatment, powder injection molding feeding, and sintering samples

    图  2  添加不同质量分数PEG-EP表面处理的316L粉末红外光谱

    Figure  2.  Infrared spectra of the 316L powders treated by PEG-EP with the different mass fraction

    图  3  添加不同质量分数PEG-EP表面处理的316L粉末POM热接触角

    Figure  3.  Thermal contact angle of POM for the 316L powders treated by PEG-EP with the different mass fraction

    图  4  添加不同质量分数PEG-EP表面处理的316L粉末对注射成型喂料流变性能的影响

    Figure  4.  Effect of 316L powders treated by PEG-EP with the different mass fraction on the rheological properties of injection molding feed

    图  5  添加不同质量分数PEG-EP表面处理的316L粉末生坯力学性能

    Figure  5.  Green mechanical properties of the 316L powders treated by PEG-EP with the different mass fraction

    图  6  添加不同质量分数PEG-EP表面处理的316L粉末生坯断面显微形貌

    Figure  6.  SEM images of the 316L powder green section of treated by PEG-EP with the different mass fraction

    图  7  添加不同质量分数PEG-EP表面处理的316L粉末烧结试样残碳量

    Figure  7.  Residual carbon content of the 316L powder sintered samples treated by PEG-EP with the different mass fraction

    图  8  添加不同质量分数PEG-EP表面处理的316L粉末烧结试样力学性能

    Figure  8.  Mechanical properties of the 316L powder sintered samples treated by PEG-EP with the different mass fraction

    图  9  添加不同质量分数PEG-EP表面处理的316L粉末烧结试样维氏硬度

    Figure  9.  Vickers hardness of the 316L powder sintered samples treated by PEG-EP with the different mass fraction

    图  10  添加不同质量分数PEG-EP表面处理的316L粉末烧结试样金相形貌及晶粒变化

    Figure  10.  Metallographic images and grain changes of the 316L powder sintered samples treated by PEG-EP with the different mass fraction

  • [1] Li L J, Li Y M, Deng Z Y. Metal powder injection molding production equipment and its development trend. Mater Sci Eng Powder Metall, 2004(3): 212

    李流军, 李益民, 邓忠勇. 金属粉末注射成形生产设备及其发展趋势. 粉末冶金材料科学与工程, 2004(3): 212
    [2] Aslam M, Ahmad F, Yusoff P S, et al. Investigation of boron addition on densification and cytotoxicity of powder injection molded 316L stainless steel dental materials. Arabian J Sci Eng, 2016, 41(11): 4669 doi: 10.1007/s13369-016-2224-1
    [3] Abdullah A A, Norita H, Azlina H N, et al. Preparation of SS316L MIM feedstock with biopolymer as a binder. IOP Conf Ser Mater Sci Eng, 2018, 290(1): 012076
    [4] He Y Q, Chen Z H, Chen Z G. The principle and development trend of metal powder injection molding. J Mater Sci Eng, 2013(2): 165

    贺毅强, 陈振华, 陈志钢. 金属粉末注射成形的原理与发展趋势. 材料科学与工程学报, 2013(2): 165
    [5] Wang C S, Liu Y, Hu J Q. The influence of binder content on the flow properties of metal feeds. China Rubber Ind, 2017, 64(7): 431

    汪传生, 刘营, 胡纪全. 粘结剂含量对金属喂料流动性能的影响. 橡胶工业, 2017, 64(7): 431
    [6] Hnatkova E, Hausnerova B, Hales A, et al. Processing of MIM feedstocks based on Inconel 718 powder and partially water-soluble binder varying in PEG molecular weight. Powder Technol, 2017, 322: 439 doi: 10.1016/j.powtec.2017.09.029
    [7] Hayat M D, Goswami A, Matthews S, et al. Modification of PEG/PMMA binder by PVP for titanium metal injection moulding. Powder Technol, 2017, 315: 243 doi: 10.1016/j.powtec.2017.04.004
    [8] Muhammad D H, Jadhav P P, Zhang H, et al. Improving titanium injection moulding feedstock based on PEG/PPC based binder system. Powder Technol, 2018, 330: 304 doi: 10.1016/j.powtec.2018.02.043
    [9] Liu W, Xie Z, Jia C. Surface modification of ceramic powders by titanate coupling agent for injection molding using partially water soluble binder system. J Eur Ceram Soc, 2012, 32(5): 1001 doi: 10.1016/j.jeurceramsoc.2011.11.017
    [10] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217
    [11] Zhou W Z, Zhu J, Li Z, et al. Effects of FeCrBSi pre-alloyed powder on sintering properties of 316L stainless steel by metal injection molding. Powder Metall Technol, 2018, 36(4): 243

    周晚珠, 朱杰, 李志, 等. FeCrBS预合金粉末对金属注射成形316L不锈钢烧结性能的影响. 粉末冶金技术, 2018, 36(4): 243
    [12] Zhu H Y. Preparation and Application of a New Polyaldehyde-Based Binder for Metal Powder Injection Molding [Dissertation]. Hefei: Hefei University of Technology, 2017

    朱海洋. 金属粉末注射成型用新型聚醛基粘结剂的制备及应用[学位论文]. 合肥: 合肥工业大学, 2017
    [13] Dou Y K. 316L Stainless Steel Metal Injection Molding Process and Performance Research [Dissertation]. Hefei: Hefei University of Technology, 2016

    豆亚坤. 316L不锈钢金属注射成形工艺及性能研究[学位论文]. 合肥: 合肥工业大学, 2016
    [14] Thavanayagam G, Pickering K L, Swan J E, et al. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol, 2015, 269: 227 doi: 10.1016/j.powtec.2014.09.020
    [15] Zhu H Z, Tian C L, He L H. Development and performance study of non-ionic waterborne epoxy resin emulsion. New Chem Mater, 2016(11): 226

    朱洪洲, 田春玲, 何丽红. 非离子型水性环氧树脂乳液的研制及性能研究. 化工新型材料, 2016(11): 226
    [16] Zheng W, Zhu J W, Zhou C. Preparation and performance study of self-emulsifying non-ionic epoxy resin. China Plast, 2017, 285(12): 28

    郑帼, 朱佳文, 周存. 自乳化非离子型环氧树脂的制备及性能研究. 中国塑料, 2017, 285(12): 28
    [17] Liu Y, Zhou T, Chen Z, et al. Crystallization behavior and toughening mechanism of poly (ethylene oxide) in polyoxymethylene/poly (ethylene oxide) crystalline/crystalline blends. Polym Adv Technols, 2014, 25(7): 760 doi: 10.1002/pat.3307
    [18] Wen J X, Xie Z P, Cao W B. Novel fabrication of more homogeneous water-soluble binder system feedstock by surface modification of oleic acid. Ceram Int, 2016: 15530
    [19] Li C L, Mei Q S, Li J Y, et al. Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing. Scr Mater, 2018, 153: 27 doi: 10.1016/j.scriptamat.2018.04.042
    [20] Gao X L, Xia T D, Wang X J. Present research status for metals refinement methods. Met Funct Mater, 2009, 16(6): 60

    高晓龙, 夏天东, 王晓军. 金属晶粒细化方法的研究现状. 金属功能材料, 2009, 16(6): 60
    [21] Liu Q, Tang J L. Influence of carbon addition on grain refinement of magnesium-aluminum alloys. Foundry Technol, 2008, 29(11): 1498

    刘倩, 唐靖林. 碳对镁铝合金晶粒细化影响的研究. 铸造技术, 2008, 29(11): 1498
  • 加载中
图(10)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  41
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回