硅化物涂层对Nb‒Ti‒Al合金力学性能的影响

赵刚 周小军 梁斌 白晓东 蔡圳阳 杨生春

赵刚, 周小军, 梁斌, 白晓东, 蔡圳阳, 杨生春. 硅化物涂层对Nb‒Ti‒Al合金力学性能的影响[J]. 粉末冶金技术, 2022, 40(6): 494-498. doi: 10.19591/j.cnki.cn11-1974/tf.2020120004
引用本文: 赵刚, 周小军, 梁斌, 白晓东, 蔡圳阳, 杨生春. 硅化物涂层对Nb‒Ti‒Al合金力学性能的影响[J]. 粉末冶金技术, 2022, 40(6): 494-498. doi: 10.19591/j.cnki.cn11-1974/tf.2020120004
ZHAO Gang, ZHOU Xiao-jun, LIANG Bin, BAI Xiao-dong, CAI Zhen-yang, YANG Sheng-chun. Effect of silicide coating on mechanical properties of Nb‒Ti‒Al alloys[J]. Powder Metallurgy Technology, 2022, 40(6): 494-498. doi: 10.19591/j.cnki.cn11-1974/tf.2020120004
Citation: ZHAO Gang, ZHOU Xiao-jun, LIANG Bin, BAI Xiao-dong, CAI Zhen-yang, YANG Sheng-chun. Effect of silicide coating on mechanical properties of Nb‒Ti‒Al alloys[J]. Powder Metallurgy Technology, 2022, 40(6): 494-498. doi: 10.19591/j.cnki.cn11-1974/tf.2020120004

硅化物涂层对Nb‒Ti‒Al合金力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020120004
基金项目: 国家自然科学基金资助项目(51901252);宁夏回族自治区自然科学基金资助项目(2019AAC03284);湖南省自然科学基金资助项目(2020JJ5713,2020JJ5737)
详细信息
    通讯作者:

    E-mail: zhaogang4346@163.com(赵刚)

    csuczy@csu.edu.cn(蔡圳阳)

  • 中图分类号: TG174.4

Effect of silicide coating on mechanical properties of Nb‒Ti‒Al alloys

More Information
  • 摘要: 采用真空电弧炉熔炼法制备低密度Nb‒Ti‒Al合金铸锭,利用料浆烧结法在铸锭表面涂覆Si‒Cr‒Ti复合硅化物涂层,使用万能电子拉伸试验机对合金试样和涂层试样进行力学性能测试,研究硅化物涂层对试样力学性能的影响。结果表明,与合金试样相比,涂覆涂层后的低密度铌合金室温力学性能(抗拉强度、屈服强度及延伸率)显著下降。为进一步研究涂覆涂层合金力学性能下降的原因,采用扫描电子显微镜和能谱仪对合金试样和涂层试样进行显微组织观察、涂层/基体界面成分分析及C含量(质量分数)测定。结果表明,涂层试样力学性能下降的主要原因包括涂覆涂层后合金晶粒显著长大,合金中强化元素Al的向外扩散,脆性相Nb3Al的形成以及Si‒Cr‒Ti涂层对合金产生的“渗沉效应”。
  • 图  1  拉伸试验后合金试样(a)与涂层试样(b)

    Figure  1.  Alloy samples (a) and the coated samples (b) after the tensile test

    图  2  合金试样及涂层试样金相显微形貌:(a)合金试样横向截面;(b)合金试样纵向截面;(c)合金试样纵向平面;(d)涂层试样横向截面;(e)涂层试样纵向截面;(f)涂层试样纵向平面

    Figure  2.  Metallographic microstructures of the alloy and coated samples: (a) transverse section of the alloy samples; (b) longitudinal section of the alloy samples; (c) longitudinal plane of the alloy samples; (d) transverse section of the coated samples; (e) longitudinal section of the coated samples; (f) longitudinal plane of the coated samples

    图  3  涂层试样截面形貌

    Figure  3.  Section morphology of the coated samples

    图  4  涂层/合金界面能谱分析

    Figure  4.  EDS analysis of the interface between coating and alloy

    图  5  Nb‒Ti‒Al三元合金相图1100 ℃等温截面

    Figure  5.  Isothermal section of the phase diagram for the Nb‒Ti‒Al ternary alloys at 1100 ℃

    图  6  涂层试样截面微观形貌(a)及取样区C元素分布(b)

    Figure  6.  Section morphology of the coated samples (a) and the C element distribution in the sampling area (b)

    表  1  合金试样和涂层试样力学性能

    Table  1.   Mechanical properties of the alloy samples and the coated samples

    试样编号 抗拉强度 / MPa 屈服强度 / MPa 延伸率 / %
    合金试样-1# 780.3 750.5 23.6
    合金试样-2# 775.9 746.1 24.4
    合金试样-3# 770.4 740.4 26.0
    涂层试样-1# 549.2 521.2 12.0
    涂层试样-2# 558.0 527.6 11.2
    涂层试样-3# 554.2 527.7 10.4
    下载: 导出CSV

    表  2  不同试样中C元素质量分数

    Table  2.   Mass fraction of C element in the different samples ×10‒6

    合金试样 涂层试样
    1 2 3 1 2 3
    84 77 82 60 51 55
    下载: 导出CSV
  • [1] Sikka V K, Loria E A. Characteristics of a multicomponent Nb‒Ti‒Al alloy via industrical-scale practice. Mater Sci Eng A, 1997, 239-240: 745 doi: 10.1016/S0921-5093(97)00662-X
    [2] Guo Q W, Wang Z X. Modern Metallurgy of Niobium and Tantalum. Beijing: Metallurgical Industry Press, 2009

    郭青蔚, 王肇信. 现代铌钽冶金. 北京: 冶金工业出版社, 2009
    [3] Guo B H, Guo X P. Recent progress on room temperature fracture toughness of Nb‒Ti‒Cr‒Si based ultrahigh temperature alloy. Mater Rev, 2016, 30(17): 148

    郭宝会, 郭喜平. Nb‒Ti‒Cr‒Si基超高温合金的室温断裂韧性研究进展. 材料导报, 2016, 30(17): 148
    [4] Cai Z Y, Xiao L R, Yu C X, et al. High temperature oxidation behavior of Nb‒Ti‒Al alloy and its silicide coating. Mater Sci Eng Powder Metall, 2013, 18(1): 94 doi: 10.3969/j.issn.1673-0224.2013.01.018

    蔡圳阳, 肖来荣, 余宸旭, 等. Nb‒Ti‒Al合金及其硅化物涂层的高温氧化行为. 粉末冶金材料科学与工程, 2013, 18(1): 94 doi: 10.3969/j.issn.1673-0224.2013.01.018
    [5] Wang F, Zheng X, Bai R, et al. Microstructure and mechanical properties of low-density NbTiAlVZr alloy. Rare Met Mater Eng, 2011, 40(11): 1972

    王峰, 郑欣, 白润, 等. 低密度NbTiAlVZr合金的微观组织和力学性能. 稀有金属材料与工程, 2011, 40(11): 1972
    [6] Wang Y Q, Liu Z G, Wang D X, et al. Several micro-alloy strengthening techniques in low-density Nb‒Ti‒Cr‒Al super alloys. Hunan Nonferrous Met, 2012, 28(6): 40 doi: 10.3969/j.issn.1003-5540.2012.06.012

    汪燕青, 刘兆刚, 王东新, 等. 几种Nb‒Ti‒Cr‒Al合金的微合金强化工艺. 湖南有色金属, 2012, 28(6): 40 doi: 10.3969/j.issn.1003-5540.2012.06.012
    [7] Liu Z G, Wang Y Q, Liu C H, et al. Study on microstructure of as-cast Nb‒Ti‒Cr‒Al alloys. Hunan Nonferrous Met, 2012, 28(2): 47 doi: 10.3969/j.issn.1003-5540.2012.02.013

    刘兆刚, 汪燕青, 刘创红, 等. 铌钛铬铝合金的铸态微观组织分析研究. 湖南有色金属, 2012, 28(2): 47 doi: 10.3969/j.issn.1003-5540.2012.02.013
    [8] Cai Z Y, Shen H T, Liu S N, et al. Review and prospect of refractory metal alloys and high temperature oxidation resistance coatings. Chin J Nonferrous Met, 2020, 30(9): 1991 doi: 10.11817/j.ysxb.1004.0609.2020-37623

    蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望. 中国有色金属学报, 2020, 30(9): 1991 doi: 10.11817/j.ysxb.1004.0609.2020-37623
    [9] Jia Z H. High-temperature oxidation-resistant coatings for columbium alloy and molybdenum alloy with slurry method. Powder Metall Technol, 2001, 19(2): 74 doi: 10.3321/j.issn:1001-3784.2001.02.003

    贾中华. 料浆法制备铌合金和钼合金高温抗氧化涂层. 粉末冶金技术, 2001, 19(2): 74 doi: 10.3321/j.issn:1001-3784.2001.02.003
    [10] Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidation mechanism of Nb–Ti–Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347

    赵刚, 周小军, 张静, 等. Nb‒Ti‒Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347
    [11] Yu C X, Xiao L R, Zhao L, et al. Dynamics of recrystallization and grain growth behavior of Nb‒Ti‒Al superalloy. Trans Mater Heat Treat, 2012, 33(Supple II): 40

    余宸旭, 肖来荣, 赵雷, 等. Nb‒Ti‒Al高温合金的再结晶动力学和晶粒长大行为. 材料热处理学报, 2012, 33(增刊II): 40
    [12] Leonard K J, Mishurda J C, Vasudevan V K. Phase equilibria at 1100 ℃ in the Nb‒Ti‒A1 system. Mater Sci Eng A, 2002, 329-331: 282 doi: 10.1016/S0921-5093(01)01567-2
    [13] Wei W Q, Wang H W, Zou C M, et al. Effects of Al contents on the microstructure of Nb‒Ti‒C alloys. Rare Met Mater Eng, 2011, 40(8): 1458

    魏文庆, 王宏伟, 邹鹑鸣, 等. Al含量对Nb‒Ti‒C合金组织的影响. 稀有金属材料与工程, 2011, 40(8): 1458
    [14] Yin W H, Tang H P. Refractory Metal Materials and Engineering Applications. Beijing: Metallurgical Industry Press, 2012

    殷为宏, 汤慧萍. 难熔金属材料与工程应用. 北京: 冶金工业出版社, 2012
    [15] Yu C X, Xiao L R, Zhao X J, et al. Microstructure and mechanical properties of Nb‒20Ti‒16Al alloy with carbon addition. Chin J Rare Met, 2017, 41(9): 980

    余宸旭, 肖来荣, 赵小军, 等. C元素的添加对Nb‒20Ti‒16Al合金组织和性能的影响. 稀有金属, 2017, 41(9): 980
    [16] Xiao L R, Zhou X J, Wang Y F, et al. Formation and oxidation behavior of Ce-modified MoSi2‒NbSi2 coating on niobium alloy. Corros Sci, 2020, 173: 108751 doi: 10.1016/j.corsci.2020.108751
    [17] Cai Z Y, Zhao X J, Zhang D X, et al. Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta‒W alloy at 1800 ℃. Corros Sci, 2018, 143: 116 doi: 10.1016/j.corsci.2018.08.007
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  42
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回