ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能

章伟强 袁鸽成 王娟 罗铁钢

章伟强, 袁鸽成, 王娟, 罗铁钢. ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 268-274. doi: 10.19591/j.cnki.cn11-1974/tf.2021010001
引用本文: 章伟强, 袁鸽成, 王娟, 罗铁钢. ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 268-274. doi: 10.19591/j.cnki.cn11-1974/tf.2021010001
ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. doi: 10.19591/j.cnki.cn11-1974/tf.2021010001
Citation: ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. doi: 10.19591/j.cnki.cn11-1974/tf.2021010001

ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021010001
基金项目: 广东省科学院建设国内一流研究机构行动专项资助项目(2019GDASYL-0501014);广东省科技计划资助项目(2018dr013);广东特支计划资助项目(2017TQ04C645)
详细信息
    通讯作者:

    E-mail: gchyuan@gdyt.edu.cn

  • 中图分类号: TB333

Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites

More Information
  • 摘要: 采用粉末冶金工艺制备了Al2O3增强ZrO2(alumina reinforced zirconia,ARZ)陶瓷颗粒增强316L不锈钢(316L不锈钢/ARZ)复合材料,研究了ARZ陶瓷颗粒体积分数对316L不锈钢/ARZ复合材料的微观组织、相对密度、硬度、耐磨性的影响。结果表明:当ARZ陶瓷颗粒体积分数为20%时,复合材料的相对密度达到97.53%,与不锈钢基体相当;继续加入ARZ陶瓷,陶瓷颗粒发生团聚降低了复合材料相对密度。316L不锈钢/ARZ复合材料的硬度随着ARZ陶瓷颗粒体积分数的增高而增大,当ARZ陶瓷颗粒的体积分数为60%时,复合材料的硬度达到最大值HRB 96.8。复合材料耐磨性优于不锈钢基体,其中含有体积分数为60%ARZ陶瓷颗粒的复合材料体积磨损率较基体减少了4.2倍;随着ARZ陶瓷颗粒含量的增加,复合材料的耐磨性提高,复合材料的磨损机理主要为316L不锈钢的剥落。
  • 图  1  原料粉末微观形貌:(a)ARZ;(b)316L不锈钢

    Figure  1.  Morphology of the raw material powders: (a) ARZ; (b) 316L stainless steels

    图  2  316L不锈钢/ARZ坯料脱脂烧结升温曲线

    Figure  2.  Debinding and sintering temperature curve of the 316L stainless steel/ARZ billets

    图  3  含不同体积分数ARZ复合材料扫描电子显微形貌:(a)0;(b)20%;(c)40%;(d)60%

    Figure  3.  SEM images of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    图  4  含有体积分数40%ARZ的复合材料界面放大图及能谱面扫图

    Figure  4.  Magnified view and the EDS mapping images of the composites interface with the ARZ volume fraction of 40%

    图  5  含不同ARZ体积分数的复合材料相对密度

    Figure  5.  Relative density of the composites with the different volume fraction of ARZ

    图  6  含不同体积分数ARZ复合材料的硬度

    Figure  6.  Hardness of the composites with the different volume fraction of ARZ

    图  7  含有不同体积分数ARZ的复合材料的体积磨损率

    Figure  7.  Volume wear rate of composites with different volume fraction of ARZ

    图  8  含不同体积分数ARZ复合材料的摩擦系数

    Figure  8.  Friction coefficient of the composites with the different volume fraction of ARZ

    图  9  含不同体积分数ARZ复合材料的磨损形貌:(a)0;(b)20%;(c)40%;(d)60%

    Figure  9.  Wear morphology of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    表  1  图9(c)放大图中能谱分析(质量分数)

    Table  1.   EDS analysis of the enlarged view in Fig.9(c) %

    AlZrFeCrO
    16.0331.901.753.7546.57
    下载: 导出CSV
  • [1] Guo Y K, Li D B, Zhou Y, et al. Microstructure of ZrO2(2Y)/316L stainless steel composites. Chin J Nonferrous Met, 2003, 13(4): 963

    郭英奎, 李东波, 周玉, 等. ZrO2(2Y)/316L不锈钢复合材料的微观组织. 中国有色金属学报, 2003, 13(4): 963
    [2] Guo Y K, Zhao X H, Zhou Y, et al. The SEM analysis of ZrO2/316L stainless steel composites. J Harbin Univ Sci Technol, 2002, 7(1): 50

    郭英奎, 赵晓华, 周玉, 等. ZrO2/316L不锈钢复合材料的SEM分析. 哈尔滨理工大学学报. 2002, 7(1): 50
    [3] Kuruvilla A K, Prasad K S, Bhanuprasad V V, et al. Microstructure-property correlation in Al/TiB2(XD) composites. Scr Metall Mater, 1990, 24(5): 873 doi: 10.1016/0956-716X(90)90128-4
    [4] Deng C H, Ge Q L, Fan A Q. Present research status and trend of metal matrix composites by powder metallurgy. Powder Metall Ind, 2011, 21(1): 54

    邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势. 粉末冶金工业, 2011, 21(1): 54
    [5] Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol, 2000, 106(1-3): 58 doi: 10.1016/S0924-0136(00)00639-7
    [6] Zhang L B, Hai J T. Metal matrix composites in China. J Mater Process Technol, 1998, 75(1-3): 1 doi: 10.1016/S0924-0136(97)00236-7
    [7] Cao Y J. Metal injection molding of stainless steels. Powder Metall Technol, 2000, 18(4): 274

    曹勇家. 金属注射成形不锈钢. 粉末冶金技术, 2000, 18(4): 274
    [8] Guo Z W, Zhang W Q, Liu X F, et al. Friction wear behaviors of 316L stainless steel/Y-PSZ composites. Chin J Eng, 2008, 30(7): 740

    郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性. 工程科学学报, 2008, 30(7): 740
    [9] Pu Z L, Chu J L, Mao X P. Summarization on preparation for particle reinforced metal matrix composites. Mod Electr Power, 2002, 19(6): 31

    蒲泽林, 褚景春, 毛雪平. 颗粒增强金属基复合材料的制备方法综述. 现代电力, 2002, 19(6): 31
    [10] Luo Z C, Ning J P, Wang J, et al. Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification. Wear, 2019, 432-433: 202970 doi: 10.1016/j.wear.2019.202970
    [11] Tian C J, He X B, Mei M, et al. Si3N4 particle-reinforced 316L stainless steel prepared by powder injection molding. Chin J Eng, 2011, 33(11): 1373

    田常娟, 何新波, 梅敏, 等. 粉末注射成形制备Si3N4颗粒增强316L不锈钢. 工程科学学报, 2011, 33(11): 1373
    [12] Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe‒Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104

    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁‒铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104
    [13] Ma J C. Preparation and Properties of ZTA Particle Reinforced High Manganess Steel Composites [Dissertation]. Xi’ an: Xi’ an University of Technology, 2019

    马建朝. ZTA颗粒增强高锰钢复合材料制备及其性能研究[学位论文]. 西安: 西安理工大学, 2019
    [14] Pan C M. Simulation and Experimental Study on Injection Molding of 316L Stainless Steel Powder [Dissertation]. Kunming: Kunming University of Science and Technology, 2016

    潘超梅. 316L不锈钢粉末注射成形模拟及实验研究[学位论文]. 昆明: 昆明理工大学, 2016
    [15] Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42

    卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  51
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回