FGH91粉末高温合金与K418B铸造叶环热等静压扩散连接研究

罗学军 王珏 赵巍 马国君 武丹 王旭青

罗学军, 王珏, 赵巍, 马国君, 武丹, 王旭青. FGH91粉末高温合金与K418B铸造叶环热等静压扩散连接研究[J]. 粉末冶金技术, 2021, 39(4): 291-296. doi: 10.19591/j.cnki.cn11-1974/tf.2021010002
引用本文: 罗学军, 王珏, 赵巍, 马国君, 武丹, 王旭青. FGH91粉末高温合金与K418B铸造叶环热等静压扩散连接研究[J]. 粉末冶金技术, 2021, 39(4): 291-296. doi: 10.19591/j.cnki.cn11-1974/tf.2021010002
LUO Xue-jun, WANG Jue, ZHAO Wei, MA Guo-jun, WU Dan, WANG Xu-qing. Research on diffusion bonding of FGH91 powder metallurgy superalloy and K418B castedblade by hot isostatic pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 291-296. doi: 10.19591/j.cnki.cn11-1974/tf.2021010002
Citation: LUO Xue-jun, WANG Jue, ZHAO Wei, MA Guo-jun, WU Dan, WANG Xu-qing. Research on diffusion bonding of FGH91 powder metallurgy superalloy and K418B castedblade by hot isostatic pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 291-296. doi: 10.19591/j.cnki.cn11-1974/tf.2021010002

FGH91粉末高温合金与K418B铸造叶环热等静压扩散连接研究

doi: 10.19591/j.cnki.cn11-1974/tf.2021010002
详细信息
    通讯作者:

    E-mail:xuejun.luo@biam.ac.cn

  • 中图分类号: TG132.3

Research on diffusion bonding of FGH91 powder metallurgy superalloy and K418B castedblade by hot isostatic pressing

More Information
  • 摘要: 采用热等静压工艺进行了FGH91粉末高温合金和K418B铸造叶环扩散连接试验,研究了FGH91-K418B双合金的界面成分扩散和连接接头的组织和力学性能。结果表明,在连接界面足够清洁的条件下,选择1190 ℃+170 MPa的热等静压工艺,可以实现FGH91和K418B两种合金良好的冶金连接。进一步观察和分析发现,扩散连接接头致密完整,无夹杂物和连续的第二相析出物,扩散区宽度80~120 μm。FGH91-K418B双合金的拉伸性能、持久性能和显微组织具有良好的一致性,试样断裂均未发生在界面结合处。
  • 图  1  FGH91-K418B双合金整体叶盘模拟件

    Figure  1.  Simulated component of the FGH91-K418B dual alloy blisk

    图  2  不同热等静压温度下双合金界面抛光态金相组织:(a)1160 ℃;(b)1175 ℃;(c)1190 ℃;(d)1205 ℃

    Figure  2.  As-polished morphologies of the dual alloy interface at different HIP temperatures: (a) 1160 ℃; (b) 1175 ℃; (c) 1190 ℃; (d) 1205 ℃

    图  3  热等静压温度1190 ℃下双合金界面腐蚀态金相组织:(a)宏观图;(b)局部放大图

    Figure  3.  As-corroded morphologies of the dual alloy interface by HIP at 1190 ℃: (a) macrograph; (b) partial enlarged view

    图  4  FGH91与K418B合金扩散连接接头显徽组织

    Figure  4.  Microstructures of the diffusion bonding joint between FGH91 and K418B alloys

    图  5  FGH91-K418B连接界面显微形貌(a)及元素成分分布((b)和(c))

    Figure  5.  SEM micrograph (a) and the elemental distribution ((b) and (c)) at the bonding interface

    图  6  热等静压前后K418B合金γ′相的显微形貌:(a)HIP前;(b)HIP后

    Figure  6.  SEM images of γ′ phase in K418B alloys before and after HIP: (a) before HIP; (b) after HIP

    图  7  单合金盘(a)与双合金盘(b)中FGH91合金γ′相显微组织

    Figure  7.  SEM images of γ′ phase in FGH91 alloys of the single alloy disk (a) and the dual alloy disk (b)

    图  8  拉伸测试后FGH91-K418B复合试样:(a)室温;(b)540 ℃

    Figure  8.  FGH91-K418B samples after the tensile testing: (a) room temperature; (b) 540 ℃

    图  9  持久测试后FGH91(a)、K418B(b)以及FGH91-K418B(c)复合试样

    Figure  9.  FGH91 (a), K418B (b), and FGH91-K418B (c) samples after the rupture testing

    表  1  实验用FGH91合金和K418B合金化学成分(质量分数)

    Table  1.   Chemical composition of FGH91 and K418B alloys %

    合金 元素
    AlCoCrCTiMoNbZrNi
    FGH914.0017.4214.990.0343.484.94余量
    K418B6.1011.800.0500.804.502.100.09余量
    下载: 导出CSV

    表  2  FGH91与K418B扩散连接的相关常数

    Table  2.   Related constants of diffusion bonding FGH91 and K418B

    元素扩散系数,
    D / 10−14
    (m2·s−1)
    FGH91成分含量 K418B成分含量
    质量分数 /
    %
    体积浓度 /
    (kg·m−3)
    质量分数 /
    %
    体积浓度/
    (kg·m−3)
    Cr2.40807015.00120150.0 11.8294678.2
    Co1.64058017.34138893.4 00
    Mo0.4331075.0240210.24.5836685.8
    Al5.9612804.0232200.26.0448380.4
    Ti1.4831503.6329076.30.725767.2
    Nb1.141570002.0816660.8
    Ni1.35668054.93439989.374.69598266.9
    下载: 导出CSV

    表  3  FGH91-K418B双合金整体叶盘模拟件拉伸性能

    Table  3.   Tensile properties of the FGH91-K418B dual alloy blisk

    温度 / ℃σp0.2 / MPaσb / MPaδ5 / %Ψ / %备注
    257038145.912.7断在K418B一侧
    5407248626.510.1断在K418B一侧
    7606878616.27.6断在K418B一侧
    注:σp0.2为屈服强度,σb为拉伸强度,δ5为伸长率,Ψ为面收缩率。
    下载: 导出CSV

    表  4  FGH91-K418B双合金整体叶盘模拟件持久性能

    Table  4.   Stress rupture properties of the FGH91-K418B dual alloy blisk

    温度 /
    试样应力 /
    MPa
    持续时间 /
    h
    延伸率 /
    %
    备注
    760K418B合金530299.589.48实测值
    530≥50≥2技术标准要求
    760FGH91合金58628.5011.68实测值
    586≥15≥8技术标准要求
    760FGH91-K418B
    复合试样
    58627.1713.28断在FGH91
    一侧
    下载: 导出CSV
  • [1] Huang C F. Modern aeroengine integral blisk and its manufacturing technology. Aeronaut Manuf Technol, 2006(4): 94 doi: 10.3969/j.issn.1671-833X.2006.04.021

    黄春锋. 现代航空发动机整体叶盘及其制造技术. 航空制造技术, 2006(4): 94 doi: 10.3969/j.issn.1671-833X.2006.04.021
    [2] Yu J, Zhang Q, Ouyang Z G. Structural analysis and parameter selection of double-alloy turbine blisk. Equip Manuf Technol, 2020(6): 53 doi: 10.3969/j.issn.1672-545X.2020.06.014

    于晶, 张琴, 欧阳志高. 航空发动机双合金涡轮整体叶盘结构分析及参数选取. 装备制造技术, 2020(6): 53 doi: 10.3969/j.issn.1672-545X.2020.06.014
    [3] Liu Y Y, Yao Z K, Guo H Z. Research advances in manufacture technique of dual property disk applied to aircraft engine. Mater Rev, 2007, 21(12): 95 doi: 10.3321/j.issn:1005-023X.2007.12.024

    刘莹莹, 姚泽坤, 郭鸿镇. 航空发动机用双性能盘的技术研究进展. 材料导报, 2007, 21(12): 95 doi: 10.3321/j.issn:1005-023X.2007.12.024
    [4] Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011

    王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011
    [5] Wang X F, Yang J, Zou J W, et al. Study on oxide inclusions of nickel-based P/M superalloy FHG96 bycomputed tomography technology. Powder Metall Technol, 2019, 37(4): 264

    王晓峰, 杨杰, 邹金文, 等. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究. 粉末冶金技术, 2019, 37(4): 264
    [6] Xu W Y, Li Z, Liu Y F, et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders. Powder Metall Technol, 2020, 38(3): 192

    许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响. 粉末冶金技术, 2020, 38(3): 192
    [7] Tian G F, Chen Y, Wang Y. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure. Powder Metall Technol, 2018, 36(6): 403

    田高峰, 陈阳, 汪煜. 梯度组织FGH96合金残留枝晶区的组织特征研究. 粉末冶金技术, 2018, 36(6): 403
    [8] Zhou L, Wang Y, Zou J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96. Powder Metall Technol, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008

    周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能研究. 粉末冶金技术, 2017, 35(1): 46 doi: 10.3969/j.issn.1001-3784.2017.01.008
    [9] Zhang L C, Xu W Y, Li Z, et al. Surface oxidation characteristics of nickel-base superalloy GH4169 powder. J Aeronaut Mater, 2020, 40(6): 1 doi: 10.11868/j.issn.1005-5053.2019.000183

    张利冲, 许文勇, 李周, 等. 镍基高温合金GH4169粉末表面氧化特性. 航空材料学报, 2020, 40(6): 1 doi: 10.11868/j.issn.1005-5053.2019.000183
    [10] Tang X, Yu B Z, Hu H, et al. Investigation on hot isostatic pressing and heat treating process for control-grain cast integral turbine wheels of K418B alloy. J Mater Eng, 2003(9): 41 doi: 10.3969/j.issn.1001-4381.2003.09.011

    汤鑫, 于保正, 呼和, 等. K418B控晶铸造整体叶轮热等静压和热处理工艺研究. 材料工程, 2003(9): 41 doi: 10.3969/j.issn.1001-4381.2003.09.011
    [11] Moll J H, Schwertz J H, Chandhok V K. P/M dual property wheels for small engines. Met Powder Rep, 1983, 38(10): 547
    [12] Wang X Q, Carter L N, Adkins N J E, et al. Novel hybrid manufacturing process of CM247LC and multi-material blisks. Micromachine, 2020, 11(5): 492 doi: 10.3390/mi11050492
    [13] Mangerramova L A, Zahrova T P, Gromov M V. Optimal design of bimetallic components manufactured by HIP from powder and cast Ni-base super alloys // Proceedings of International Conference on Hot Isostatic Pressing. Beijing, 1999: 229
    [14] Hoppin George S, Curbishley George. Dual Alloy Turbine Wheels: US patent, 4581300.1986-4-8
    [15] Luo X J, Ma G J, Wang X F, et al. FGH95-K418B dual alloy HIP diffusion bonding process. J Aeronaut Mater, 2011, 31(4): 29 doi: 10.3969/j.issn.1005-5053.2011.4.006

    罗学军, 马国君, 王晓峰, 等. FGH95-K418B双合金热等静压复合工艺研究. 航空材料学报, 2011, 31(4): 29 doi: 10.3969/j.issn.1005-5053.2011.4.006
    [16] Liao Z B, Guo W M, Zhao M H, et al. Dynamic simulations of hot iso-static pressing diffusion bonding between K418B and FGH91. Chin J Mech Eng, 2013, 49(20): 170 doi: 10.3901/JME.2013.20.170

    廖宗博, 国为民, 赵明汉, 等. K418B和FGH91双合金热等静压扩散连接的动力学模拟研究. 机械工程学报, 2013, 49(20): 170 doi: 10.3901/JME.2013.20.170
    [17] Jia J, Tao Y, Zhang Y W, et al. Feasibility study of diffusion bonding dissimilar Ni-based superalloys by HIP. J Iron Steel Res, 2011, 23(Suppl 2): 510

    贾建, 陶宇, 张义文. 异种镍基高温合金热等静压扩散连接性研究. 钢铁研究学报, 2011, 23(增刊 2): 510
    [18] Hu G X, Cai X X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiao Tong University Press, 2010

    胡赓祥, 蔡旭珣, 戎咏华. 材料科学基础. 上海: 上海交通大学出版社, 2010
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  679
  • HTML全文浏览量:  264
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回