氧化时间对FeSiAl合金粉末组织与电磁性能的影响

郭阳 毕磊

郭阳, 毕磊. 氧化时间对FeSiAl合金粉末组织与电磁性能的影响[J]. 粉末冶金技术, 2023, 41(2): 175-180. doi: 10.19591/j.cnki.cn11-1974/tf.2021010005
引用本文: 郭阳, 毕磊. 氧化时间对FeSiAl合金粉末组织与电磁性能的影响[J]. 粉末冶金技术, 2023, 41(2): 175-180. doi: 10.19591/j.cnki.cn11-1974/tf.2021010005
GUO Yang, BI Lei. Effect of oxidation time on microstructure and electromagnetic properties of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2023, 41(2): 175-180. doi: 10.19591/j.cnki.cn11-1974/tf.2021010005
Citation: GUO Yang, BI Lei. Effect of oxidation time on microstructure and electromagnetic properties of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2023, 41(2): 175-180. doi: 10.19591/j.cnki.cn11-1974/tf.2021010005

氧化时间对FeSiAl合金粉末组织与电磁性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021010005
基金项目: 四川省自然科学基金资助项目(2021YFSY0016)
详细信息
    通讯作者:

    E-mail: guoyangchn@126.com

  • 中图分类号: TM25

Effect of oxidation time on microstructure and electromagnetic properties of FeSiAl alloy powders

More Information
  • 摘要: 以FeSiA合金粉末为原料,研究空气中500 ℃下不同氧化时间对FeSiAl合金粉末微观组织和电磁性能的影响。结果表明:随着氧化时间的延长,FeSiAl合金粉末颜色由深灰色向土黄色转变,表面微观形貌无明显改变。氧化5 h后,粉末表面出现Fe3O4,随着氧化时间进一步增加至10 h,Fe3O4逐渐转变为Fe2O3。FeSiAl合金粉末表面氧化层主要包含Fe2O3、SiO2和Al2O3。粉末介电常数和磁导率的实部随着氧化时间的增加呈上升趋势,介电常数的虚部和磁导率虚部无明显变化。
  • 图  1  FeSiAl合金粉末粒径分布

    Figure  1.  Particle size distribution of the FeSiAl alloy powders

    图  2  空气中500 ℃下不同氧化时间FeSiAl粉末表面显微形貌:(a)原样;(b)1 h;(c)5 h;(d)10 h;(e)24 h

    Figure  2.  SEM images of the FeSiAl alloy powders oxidized for the different time at 500 ℃ in air: (a) as-received sample; (b) 1 h; (c) 5 h; (d) 10 h; (e) 24 h

    图  3  空气中500 ℃下不同氧化时间FeSiAl合金粉末X射线衍射谱图

    Figure  3.  XRD patterns of the FeSiAl alloy powders oxidized for the different time at 500 ℃ in air

    图  4  空气中500 ℃氧化不同时间FeSiAl合金粉末表面O1s高分辨能谱分析:(a)原样表面全谱;(b)原样;(c)1 h;(d)5 h;(e)10 h;(f)24 h

    Figure  4.  High-resolution O1s XPS spectra of the FeSiAl alloy powders oxidized for the different time at 500 ℃ in air: (a) survey spectra of the as-received sample; (b) as-received sample; (c) 1 h; (d) 5 h; (e) 10 h; (f) 24 h

    图  5  空气中500 ℃下氧化不同时间后FeSiAl合金粉末磁滞回线

    Figure  5.  Hysteresis loops of the FeSiAl alloy powders oxidized for the different time at 500 ℃ in air

    图  6  空气中500 ℃下氧化不同时间后FeSiAl合金电磁参数:(a)介电常数实部(ε′);(b)介电常数虚部(ε″);(c)磁导率实部(μ′);(d)磁导率虚部(μ″

    Figure  6.  Electromagnetic parameters of the FeSiAl alloy powders oxidized for the different time at 500 ℃ in air: (a) real part of complex permittivity (ε′); (b) imaginary part of complex permittivity (ε″); (c) real part of complex permeability (μ′); (d) imaginary part of complex permeability (μ″)

  • [1] Han C, Zhang M, Cao W Q, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171: 953 doi: 10.1016/j.carbon.2020.09.067
    [2] Liu P, Gao S, Chen C, et al. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon, 2020, 169: 276 doi: 10.1016/j.carbon.2020.07.063
    [3] Guo Y, Jian X, Zhang L, et al. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem Eng J, 2020, 384: 123371 doi: 10.1016/j.cej.2019.123371
    [4] Huo Y, Zhao K, Miao P, et al. Microwave absorption performance of SiC/ZrC/SiZrOC hybrid nanofibers with enhanced high-temperature oxidation resistance. ACS Sustain Chem Eng, 2020, 8(28): 10490 doi: 10.1021/acssuschemeng.0c02789
    [5] Wei H, Yin X, Jiang F, et al. Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. J Alloys Compd, 2020, 823: 153864 doi: 10.1016/j.jallcom.2020.153864
    [6] Jian X, Tian W, Li J, et al. High-temperature oxidation resistant ZrN0.4B0.6-SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interfaces, 2019, 11(17): 15869 doi: 10.1021/acsami.8b22448
    [7] Gao P, Jia C C, Cao W B, et. al. Effects of SiC content on the dielectric properties of AlN‒SiC composite ceramics. Powder Metall Technol, 2014, 32(4): 248

    高鹏, 贾成厂, 曹文斌, 等. SiC含量对氮化铝基微波衰减复合陶瓷性能的影响研究. 粉末冶金技术, 2014, 32(4): 248
    [8] Song W L, Cao M S, Hou Z L, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater, 2009, 61(2): 201 doi: 10.1016/j.scriptamat.2009.03.048
    [9] Sengupta A, Rao B B, Sharma N, et al. Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale, 2020, 12(15): 8466 doi: 10.1039/C9NR10980C
    [10] Han T, Luo R, Cui G, et al. Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J Eur Ceram Soc, 2019, 39(5): 1743 doi: 10.1016/j.jeurceramsoc.2019.01.018
    [11] Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132: 343 doi: 10.1016/j.carbon.2018.02.040
    [12] Ji Z, Chen K, Zhang Y F, et al. Progress on ferrite wave-absorbing materials. Powder Metall Technol, 2015, 33(5): 378 doi: 10.3969/j.issn.1001-3784.2015.05.012

    纪箴, 陈珂, 张一帆, 等. 铁氧体磁性材料吸波性能研究进展. 粉末冶金技术, 2015, 33(5): 378 doi: 10.3969/j.issn.1001-3784.2015.05.012
    [13] Liu J, Cao M S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl Mater Interfaces, 2016, 8(34): 22615 doi: 10.1021/acsami.6b05480
    [14] Li Y, Fang X, Cao M. Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci Rep, 2016, 6: 24837 doi: 10.1038/srep24837
    [15] Sharma V, Saha J, Patnaik S, et al. YIG based broad band microwave absorber: A perspective on synthesis methods. J Magn Magn Mater, 2017, 439: 277 doi: 10.1016/j.jmmm.2017.04.098
    [16] Legarra E, Apiñaniz E, Plazaola F. Study of the enhancement of the magnetic properties of Fe70Al30‒xSix alloys in the order-disorder transition. J Alloys Compd, 2016, 682: 495 doi: 10.1016/j.jallcom.2016.04.294
    [17] Li L, Gao Z, Li A, et al. Fabrication of carbonyl iron powder/SiO2-reduced iron powder/SiO2 soft magnetic composites with a high resistivity and low core loss. J Magn Magn Mater, 2018, 464: 161 doi: 10.1016/j.jmmm.2018.05.053
    [18] Gawlińska-Nęcek K, Wlazło M, Socha R, et al. Influence of conditioning temperature on defects in the double Al2O3/ZnO layer deposited by the ALD method. Materials, 2021, 14(4): 1038 doi: 10.3390/ma14041038
    [19] Fan Z, Shi J W, Gao C, et al. Rationally designed porous MnOx‒FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3. ACS Appl Mater Interfaces, 2017, 9(19): 16117 doi: 10.1021/acsami.7b00739
    [20] Yang J, Zhang Q, Wang Z, et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv Energy Mater, 2020, 10(33): 2001064 doi: 10.1002/aenm.202001064
    [21] Bahadur N M, Chowdhury F, Obaidullah M, et al. Ultrasonic-assisted synthesis, characterization, and photocatalytic application of SiO2@TiO2 core-shell nanocomposite particles. J Nanomater, 2019, 2019: 1
    [22] Liu T, Sun X, Sun S, et al. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries. Electrochim Acta, 2019, 295: 684 doi: 10.1016/j.electacta.2018.10.168
    [23] Hemmati I, Hosseini H M, Kianvash A. The correlations between processing parameters and magnetic properties of an iron-resin soft magnetic composite. J Magn Magn Mater, 2006, 305(1): 147 doi: 10.1016/j.jmmm.2005.12.004
    [24] Jiang Z, Huang W, Zhang Z, et al. Thermal decomposition of Mo(CO)6 on thin Al2O3 film: A combinatorial investigation by XPS and UPS. Surf Sci, 2007, 601(3): 844 doi: 10.1016/j.susc.2006.11.016
    [25] Kouotou P M, Tian Z Y. Controlled synthesis of α-Fe2O3@Fe3O4 composite catalysts for exhaust gas purification. Proc Combust Inst, 2019, 37(4): 5445 doi: 10.1016/j.proci.2018.05.172
    [26] Liu J, Liang H, Wu H J, et al. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Composites Part A, 2020, 130: 105760 doi: 10.1016/j.compositesa.2019.105760
    [27] Deng X, Herranz T, Weis C, et al. Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C, 2008, 112(26): 9668 doi: 10.1021/jp800944r
  • 加载中
图(6)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  52
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回