缺碳预还原MoO3+氢气深脱氧工艺制备超细钼粉

张勇 张国华 周国治

张勇, 张国华, 周国治. 缺碳预还原MoO3+氢气深脱氧工艺制备超细钼粉[J]. 粉末冶金技术, 2021, 39(4): 339-344. doi: 10.19591/j.cnki.cn11-1974/tf.2021010010
引用本文: 张勇, 张国华, 周国治. 缺碳预还原MoO3+氢气深脱氧工艺制备超细钼粉[J]. 粉末冶金技术, 2021, 39(4): 339-344. doi: 10.19591/j.cnki.cn11-1974/tf.2021010010
ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. doi: 10.19591/j.cnki.cn11-1974/tf.2021010010
Citation: ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. doi: 10.19591/j.cnki.cn11-1974/tf.2021010010

缺碳预还原MoO3+氢气深脱氧工艺制备超细钼粉

doi: 10.19591/j.cnki.cn11-1974/tf.2021010010
详细信息
    通讯作者:

    E-mail:ghzhang0914@ustb.edu.cn

  • 中图分类号: TF8

Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction

More Information
  • 摘要: 以炭黑为还原剂还原MoO3制备存在少量MoO2的预还原Mo粉,然后对预还原Mo粉进行氢气深还原,成功制备出平均粒径为99~190 nm的超细钼粉,研究了碳热还原温度对Mo粉平均粒度和残碳量的影响。结果表明,在同一还原温度下,当C/MoO3摩尔比从2.0增加到2.1时,产物的粒径变化很小。碳热还原温度对产物粒径和纯度有显著影响。当C/MoO3摩尔比为2.1时,还原温度从950 ℃增加到1150 ℃,氢还原后钼粉的平均粒径从100 nm增加到190 nm,且残碳量(质量分数)由0.030%降低到0.009%。
  • 图  1  原料XRD分析和微观形貌:(a)MoO3XRD分析;(b)MoO3显微形貌;(c)炭黑显微形貌;(d)MoO3和炭黑混合物显微形貌

    Figure  1.  XRD patterns and SEM images of the raw materials: (a) XRD pattern of MoO3; (b) SEM image of MoO3; (c) SEM image of carbon black; (d) SEM image of MoO3 and carbon black mixture

    图  2  实验装置示意图

    Figure  2.  Schematic diagram of the experimental apparatus

    图  3  碳热还原产物X射线衍射分析

    Figure  3.  XRD patterns of the carbothermic reduction products

    图  4  不同温度和不同C/MoO3摩尔比的碳热还原产物显微形貌:(a)950 ℃,2.0;(b)950 ℃,2.1;(c)950 ℃,2.2;(d)1000 ℃,2.0;(e)1000 ℃,2.1;(f)1050 ℃,2.0;(g)1050 ℃,2.1;(h)1100 ℃,2.1;(i)1150 ℃,2.1

    Figure  4.  SEM images of the carbothermic reduction products at different temperatures and C/MoO3 ratios by mole: (a) 950 ℃, 2.0; (b) 950 ℃, 2.1; (c) 950 ℃, 2.2; (d) 1000 ℃, 2.0; (e) 1000 ℃, 2.1; (f) 1050 ℃, 2.0; (g) 1050 ℃, 2.1; (h) 1100 ℃, 2.1; (i) 1150 ℃, 2.1

    图  5  不同温度和不同C/MoO3摩尔比的氢气还原产物X射线衍射分析、平均粒径及显微形貌:(a)X射线衍射分析;(b)平均粒径;(c)950 ℃,C/MoO3摩尔比2.0产物显微形貌;(d)950 ℃,C/MoO3摩尔比2.1产物显微形貌;(e)1000 ℃,C/MoO3摩尔比2.0产物显微形貌;(f)1000 ℃,C/MoO3摩尔比2.1产物显微形貌;(g)1050 ℃,C/MoO3摩尔比2.0产物显微形貌;(h)1050 ℃,C/MoO3摩尔比2.1产物显微形貌;(i)1100 ℃,C/MoO3摩尔比2.1产物显微形貌;(j)1150 ℃,C/MoO3摩尔比2.1产物显微形貌;

    图  6  炭黑还原MoO3机理示意图

    Figure  6.  Schematic diagram of the MoO3 reduction by carbon black

    表  1  Mo、MoO2和MoO3的基本物理性能参数[8,1718]

    Table  1.   Physical property parameters of Mo, MoO2, and MoO3

    物相摩尔质量/(g·mol‒1)密度/(g·cm‒3)摩尔体积/(cm3·mol‒1)
    Mo95.9410.29.41
    MoO2127.946.4719.77
    MoO3143.944.69230.68
    下载: 导出CSV
  • [1] Gu S, Qin M, Zhang H, et al. Preparation of Mo nanopowders through hydrogen reduction of a combustion synthesized foam-like MoO2 precursor. Int J Refract Met Hard Mater, 2018, 76: 90 doi: 10.1016/j.ijrmhm.2018.05.015
    [2] Wang L, Zhang G H, Wang J S, et al. Study on hydrogen reduction of ultrafine MoO2 to produce ultrafine Mo. J Phys Chem C, 2016, 120(7): 4097 doi: 10.1021/acs.jpcc.5b11394
    [3] Sun G D, Zhang G H, Jiao S Q, et al. Shape-controlled synthesis of ultrafine molybdenum crystals via salt-assisted reduction of MoO2 with H2. J Phys Chem C, 2018, 122(18): 10231 doi: 10.1021/acs.jpcc.8b01236
    [4] Ku J G, Oh J M, Kwon H, et al. High-temperature hydrogen-reduction process for the preparation of low-oxygen Mo powder from MoO3. Int J Hydrogen Energy, 2017, 42(4): 2139 doi: 10.1016/j.ijhydene.2016.09.004
    [5] Zhang G J, Sun Y J, Niu R M, et al. Microstructure and strengthening mechanism of oxide lanthanum dispersion strengthened molybdenum alloy. Adv Eng Mater, 2004, 6(12): 943 doi: 10.1002/adem.200400072
    [6] Kang J, Sun X, Deng K, et al. High strength Mg-9Al serial alloy processed by slow extrusion. Mater Sci Eng A, 2017, 697: 211 doi: 10.1016/j.msea.2017.05.017
    [7] Kim G S, Lee Y J, Kim D G, et al. Consolidation behavior of Mo powder fabricated from milled Mo oxide by hydrogen-reduction. J Alloys Compd, 2008, 454(1-2): 327 doi: 10.1016/j.jallcom.2006.12.039
    [8] Dang J, Zhang G H, Chou K C. Study on kinetics of hydrogen reduction of MoO2. Int J Refract Met Hard Mater, 2013, 41: 356 doi: 10.1016/j.ijrmhm.2013.05.009
    [9] Bolitschek J, Luidold S, O'Sullivan M. A study of the impact of reduction conditions on molybdenum morphology. Int J Refract Met Hard Mater, 2018, 71: 325 doi: 10.1016/j.ijrmhm.2017.11.037
    [10] Millner T, Neugebauer J. Volatility of the oxides of tungsten and molybdenum in the presence of water vapour. Nature, 1949, 163(4146): 601
    [11] Lenz M, Gruehn R. Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W, and their compounds. Chem Rev, 1997, 97(8): 2967 doi: 10.1021/cr940313a
    [12] Schulmeyer W V, Ortner H M. Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater, 2002, 20(4): 261 doi: 10.1016/S0263-4368(02)00029-X
    [13] Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2020, 72: 347 doi: 10.1007/s11837-019-03445-4
    [14] Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Vienna: Vienna University of Technology, 1999
    [15] L’ vov B V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim Acta, 2000, 360(2): 109 doi: 10.1016/S0040-6031(00)00540-2
    [16] Venables D S, Brown M E. Reduction of tungsten oxides with carbon. Part 1: Thermal analyses. Thermochim Acta, 1996, 282-283: 251 doi: 10.1016/0040-6031(95)02814-5
    [17] Wang L, Zhang G H, Sun Y J, et al. Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation. J Phys Chem C, 2016, 120(35): 19821 doi: 10.1021/acs.jpcc.6b05982
    [18] Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 doi: 10.1016/j.ijrmhm.2015.09.003
    [19] Wang L, Zhang G H, Chou K C. Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. Int J Refract Met Hard Mater, 2016, 59: 100 doi: 10.1016/j.ijrmhm.2016.06.001
    [20] Zhang G H, Li J J, Wang L, et al. Effects of R2CO3 (R= Li, Na and K) on the reduction of MoO2 to Mo by hydrogen. Int J Refract Met Hard Mater, 2017, 69: 180 doi: 10.1016/j.ijrmhm.2017.08.014
    [21] Sun G D, Wang K F, Ji X P, et al. Preparation of ultrafine/nano Mo particles via NaCl-assisted hydrogen reduction of different-sized MoO2 powders. Int J Refract Met Hard Mater, 2019, 80: 243 doi: 10.1016/j.ijrmhm.2019.01.020
    [22] Sun G D, Zhang G H, Chou K C. Preparation of Mo nanoparticles through hydrogen reduction of commercial MoO2 with the assistance of molten salt. Int J Refract Met Hard Mater, 2019, 78: 68 doi: 10.1016/j.ijrmhm.2018.08.014
    [23] Zhang Y, Jiao S Q, Chou K C, et al. Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2 powders with the assistance of Mo nuclei. Int J Hydrogen Energy, 2020, 45(3): 1435 doi: 10.1016/j.ijhydene.2019.11.008
    [24] Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 doi: 10.1016/j.ijrmhm.2018.04.002
    [25] Sun G D, Zhang G H, Ji X P, et al. Size-controlled synthesis of nano Mo powders via reduction of commercial MoO3 with carbon black and hydrogen. Int J Refract Met Hard Mater, 2019, 80: 11 doi: 10.1016/j.ijrmhm.2018.12.019
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  113
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回