超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能

付倩倩 通雁鹏

付倩倩, 通雁鹏. 超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能[J]. 粉末冶金技术, 2023, 41(4): 378-384. doi: 10.19591/j.cnki.cn11-1974/tf.2021010013
引用本文: 付倩倩, 通雁鹏. 超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能[J]. 粉末冶金技术, 2023, 41(4): 378-384. doi: 10.19591/j.cnki.cn11-1974/tf.2021010013
FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. doi: 10.19591/j.cnki.cn11-1974/tf.2021010013
Citation: FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. doi: 10.19591/j.cnki.cn11-1974/tf.2021010013

超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021010013
详细信息
    通讯作者:

    E-mail: fuqianqian716@163.com

  • 中图分类号: TG174.4

Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying

More Information
  • 摘要: 采用超音速等离子喷涂工艺在不锈钢基体上制备了FeAl/Al2O3、FeCrAl/Al2O3、FeAl/Al2O3-13%TiO2、FeCrAl/Al2O3-13%TiO2四种涂层,通过扫描电镜表征微观结构,图像分析技术测量孔隙率,多峰法计算α-Al2O3质量分数,并测试了涂层的抗热震性能和结合强度。结果表明:超音速等离子喷涂制备的Al2O3涂层中α-Al2O3的质量分数约为40.3%~42.5%,涂层孔隙率约为3.47%~3.52%,制备的Al2O3-13%TiO2涂层中α-Al2O3的质量分数约为24.0%~29.7%,涂层孔隙率约为3.12%~3.31%。水淬热震实验(800 ℃/保温30 min)表明,FeCrAl/Al2O3涂层的抗热震性能最优,FeCrAl/Al2O3-13%TiO2涂层抗热震性能次之,FeAl/Al2O3涂层与FeAl/Al2O3-13%TiO2涂层抗热震性能最差。
  • 图  1  原料粉末形貌:(a)Al2O3;(b)FeCrAl;(c)FeAl;(d)Al2O3-13%TiO2

    Figure  1.  Microstructure of the original powders: (a) Al2O3; (b) FeCrAl; (c) FeAl; (d) Al2O3-13%TiO2

    图  2  超音速等离子工艺沉积涂层截面形貌:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  2.  Cross-sectional microstructures of the as-sprayed coatings: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    图  3  涂层X射线衍射谱:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  3.  XRD patterns of the coatings: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    图  4  不同热循环次数后涂层表面形貌:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  4.  Surface morphology of the coatings after the different thermal cycles: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    表  1  涂层喷涂参数

    Table  1.   Spraying parameters for the coatings

    涂层 电流 / A 电压 / V 氩气流量 / (L·min−1) 氢气流量 / (L·min−1) 喷涂距离 / mm 粒子温度 / ℃ 粒子速度 / (m·s−1)
    Al2O3 312 133 65.2 16.7 90 3250.70±2.18 399.72±1.11
    FeAl 380 120 70.0 20.4 90
    Al2O3-13%TiO2 366 131 65.0 15.4 90 3242.03±2.49 387.91±2.05
    FeCrAl 380 130 65.0 12.4 100
    下载: 导出CSV

    表  2  涂层喷涂参数

    Table  2.   Spraying parameters for the coatings

    样品 衍射强度(计次) α-A12O3质量分数 / %
    (012) (104) (110) (113) (116)
    纯α-A12O3 2443 3519 1460 3607 2912
    FeAl/Al2O3 878 1039 1262 956 946 42.5
    FeCrAl/Al2O3 700 1231 1376 1014 456 40.3
    FeAl/Al2O3-13%TiO2 695 548 670 456 505 24.0
    FeCrAl/Al2O3-13%TiO2 787 704 810 671 648 29.7
    下载: 导出CSV
  • [1] Halim Z A A, Ahmad N, Hanapi M F, et al. Rapid surface treatment of grey cast iron for reduction of friction and wear by alumina coating using gas tunnel plasma spray. Mater Chem Phys, 2020, 260: 124
    [2] He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62 doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011

    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62 doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011
    [3] Zeng Y, Lee S W, Ding C X. Plasma spray coatings in different nano size alumina. Mater Lett, 2002, 57: 495 doi: 10.1016/S0167-577X(02)00818-2
    [4] Hu L, Zhang G K, Tang T. Research progress on formation mechanism and low temperature preparation technology of Al2O3 film on surface of FeAl/Al2O3 tritium permeation barrier. Mater Mech Eng, 2019, 43(6): 1

    胡立, 张桂凯, 唐涛. FeAl/Al2O3阻氚涂层表面Al2O3薄膜形成机制与低温制备技术的研究进展. 机械工程材料, 2019, 43(6): 1
    [5] Lu X C, Yan D R, Yang Y, et al. Thermal behavior of nanostructured Al2O3-13%TiO2 ceramic coatings deposited by plasma spraying. Ordn Mater Sci Eng, 2011, 34(3): 9 doi: 10.3969/j.issn.1004-244X.2011.03.003

    路学成, 阎殿然, 杨勇, 等. 等离子喷涂纳米Al2O3-13%TiO2涂层热学特性研究. 兵器材料科学与工程, 2011, 34(3): 9 doi: 10.3969/j.issn.1004-244X.2011.03.003
    [6] Yilmaz R, Kurt A O, Demir A, et al. Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating. J Eur Ceram Soc, 2007, 27: 1319 doi: 10.1016/j.jeurceramsoc.2006.04.099
    [7] Wang C, Song R G. High temperature oxidation and thermal shock of plasma sprayed nano-Al2O3/TiO2 ceramic coating. Hot Working Technol, 2012, 41(14): 145 doi: 10.3969/j.issn.1001-3814.2012.14.041

    王超, 宋仁国. 离子喷涂纳米Al2O3/TiO2陶瓷复合涂层高温氧化和热震性能研究. 热加工工艺, 2012, 41(14): 145 doi: 10.3969/j.issn.1001-3814.2012.14.041
    [8] Xu X J, He Y, Ma D L, et al. Study on the structure and thermal oxidization properties of plasma sprayed Al2O3-13TiO2 composite ceramic coatings. Surf Technol, 2010, 39(1): 15 doi: 10.3969/j.issn.1001-3660.2010.01.005

    徐心洁, 贺毅, 马东林, 等. 等离子喷涂Al2O3–13TiO2复合陶瓷涂层的组织及热氧化性能的研究. 表面技术, 2010, 39(1): 15 doi: 10.3969/j.issn.1001-3660.2010.01.005
    [9] Bai Y, Zhao L, Qu Y M, et al. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloys Compd, 2015, 644: 873 doi: 10.1016/j.jallcom.2015.05.068
    [10] Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloys Compd, 2015, 632: 794 doi: 10.1016/j.jallcom.2015.01.265
    [11] Shaw L L. Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials. Composites Part B, 1998, 29(3): 199 doi: 10.1016/S1359-8368(97)00029-2
    [12] Yang Y Z, Liu Z G, Liu Z Y, et al. Interfacial phenomena in the plasma spraying Al2O3+13wt.% TiO2 ceramic coating. Thin Solid Films, 2001, 388(1-2): 208 doi: 10.1016/S0040-6090(01)00806-9
    [13] Wang Y, Tian W, Yang Y, et al. Investigation of stress field and failure mode of plasma sprayed Al2O3-13%TiO2 coatings under thermal shock. Mater Sci Eng A, 2009, 516: 103 doi: 10.1016/j.msea.2009.03.041
    [14] Irisawa T, Matsumoto H. Thermal shock resistance and adhesion strength of plasma-sprayed alumina coating on cast iron. Thin Solid Films, 2006, 509(1-2): 141 doi: 10.1016/j.tsf.2005.09.132
    [15] Jordan E H, Gell M, Sohn Y H, et al. Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties. Mater Sci Eng A, 2001, 301(1): 80 doi: 10.1016/S0921-5093(00)01382-4
    [16] Lu X C, Yan D R, Yang Y, et al. Phase evolution of plasma sprayed Al2O3-13%TiO2 coatings derived from nanocrystalline powders. Trans Nonferrous Met Soc China, 2013, 23(10): 2951 doi: 10.1016/S1003-6326(13)62819-8
    [17] Sivakumar G, Dusane R O, Joshi S V. A novel approach to process phase pure α-A2O3 coatings by solution precursor plasma spraying. J Eur Ceram Soc, 2013, 33(13-14): 2823 doi: 10.1016/j.jeurceramsoc.2013.05.005
    [18] Lang F, Yu Z, Gedevanishvili S, et al. Isothermal oxidation behavior of a sheet alloy of Fe-40at.%Al at temperatures between 1073 and 1473 K. Intermetallics, 2003, 11(7): 697
    [19] Zhang Z G, Zhang X J, Pan T J, et al. Initial stage oxidation of Fe-Al and Fe-Cr-Al alloys at high temperature. Res Iron Steel, 2007, 35(3): 38 doi: 10.3969/j.issn.1001-1447.2007.03.011

    张志刚, 张学军, 潘太军, 等. FeAl和FeCrAl合金在高温下的初期氧化. 钢铁研究, 2007, 35(3): 38 doi: 10.3969/j.issn.1001-1447.2007.03.011
    [20] Yang K, Chen J, Hao F, et al. Stress-induced phase transformation and amorphous-to-nanocrystalline transition in plasma-sprayed Al2O3 coating with relative low temperature heat treatment. Surf Coat Technol, 2014, 253: 277 doi: 10.1016/j.surfcoat.2014.05.056
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  70
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回