Ti‒Al‒8V‒5Fe合金粉末的制备及性能

李增峰 谈萍 沈垒 赵少阳 王利卿 李爱君 殷京瓯

李增峰, 谈萍, 沈垒, 赵少阳, 王利卿, 李爱君, 殷京瓯. Ti‒Al‒8V‒5Fe合金粉末的制备及性能[J]. 粉末冶金技术, 2022, 40(6): 564-569. doi: 10.19591/j.cnki.cn11-1974/tf.2021010014
引用本文: 李增峰, 谈萍, 沈垒, 赵少阳, 王利卿, 李爱君, 殷京瓯. Ti‒Al‒8V‒5Fe合金粉末的制备及性能[J]. 粉末冶金技术, 2022, 40(6): 564-569. doi: 10.19591/j.cnki.cn11-1974/tf.2021010014
LI Zeng-feng, TAN Ping, SHEN Lei, ZHAO Shao-yang, WANG Li-qing, LI Ai-jun, YIN Jing-ou. Preparation and characterization of Ti‒1Al‒8V‒5Fe alloy powders[J]. Powder Metallurgy Technology, 2022, 40(6): 564-569. doi: 10.19591/j.cnki.cn11-1974/tf.2021010014
Citation: LI Zeng-feng, TAN Ping, SHEN Lei, ZHAO Shao-yang, WANG Li-qing, LI Ai-jun, YIN Jing-ou. Preparation and characterization of Ti‒1Al‒8V‒5Fe alloy powders[J]. Powder Metallurgy Technology, 2022, 40(6): 564-569. doi: 10.19591/j.cnki.cn11-1974/tf.2021010014

Ti‒Al‒8V‒5Fe合金粉末的制备及性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021010014
基金项目: 陕西省重点研发计划资助项目(2021GY-234);陕西省创新能力支撑计划资助项目(2020PT-039)
详细信息
    通讯作者:

    E-mail: lzfping@163.com

  • 中图分类号: TG146.2+3

Preparation and characterization of Ti‒1Al‒8V‒5Fe alloy powders

More Information
  • 摘要: 为制备3D打印用粉末原料,选用真空自耗电弧熔炼技术制备的无“β斑”Ti‒1Al‒8V‒5Fe(Ti185)合金锭,经高温锻造成ϕ100 mm棒材作为电极棒,采用等离子旋转电极雾化技术制备球形Ti185合金粉末,利用振动筛分法、扫描电子显微镜、X射线衍射分析等手段对粉末性能进行表征。结果表明:Ti185合金粉末粒度分布较宽,主要在44~150 μm之间,粉末的氧含量(质量分数)≤0.14%,粒度≤44 μm粉末的收得率为11.6%。粒度≤150 μm粉末的流动性为24.79 [s∙(50 g)‒1],松装密度为2.79 g∙cm‒3,振实密度为2.99 g∙cm‒3。等离子旋转电极雾化技术冷却速度快,所制备的Ti185合金粉末均为β相,粉末颗粒球形度较高,基本无卫星粉。此外,粒度≥124 μm的粉末表面为胞状枝晶组织,存在少量很浅的凸凹不平的微小缩孔,内部组织为快速凝固形成的胞状结构,晶界粗大明显,呈多点形核特征。随着粉末粒度的减小,冷却速度提高,粉末颗粒表面的胞状枝晶组织逐渐减少,粒度44 μm以下粉末颗粒的表面较光滑,内部组织形核点明显增多且呈现放射状生长趋势,组织明显细化。
  • 图  1  自主研发的批量等离子旋转电极雾化制粉设备

    Figure  1.  Self-developed PREP equipments

    图  2  等离子旋转电极雾化制粉原理示意图(a)及等离子旋转电极雾化制粉设备实物图(b)

    Figure  2.  Schematic diagram of the PREP process (a) and the outside view of PREP equipment (b)

    图  3  等离子旋转电极雾化法制备Ti185合金粉末显微形貌(a)与粒度分布(b)

    Figure  3.  Microstructure (a) and particle size distribution (b) of the Ti185 alloy powders prepared by PREP

    图  4  VIGA-CC法制备TiAlNb合金粉末显微形貌

    Figure  4.  Microstructure of the TiAlNb alloy powders prepared by VIGA-CC

    图  5  不同粒度Ti185粉末表面形貌:(a)150~250 μm;(b)74~96 μm;(c)44 μm;(d)、(e)、(f)分别为(a)、(b)、(c)局部放大

    Figure  5.  Surface morphology of the Ti185 powders with the different particle sizes: (a) 150~250 μm; (b) 74~96 μm; (c) 44 μm; (d), (e), and (f) the high-resolution images of (a), (b), and (c), respectively

    图  6  不同粒度Ti185粉末截面形貌:(a)150~250 μm;(b)74~96 μm;(c)44 μm;(d)、(e)、(f)分别为(a)、(b)、(c)局部放大

    Figure  6.  Microstructure of the Ti185 powders with the different particle sizes on the cross section: (a) 150~250 μm; (b) 74~96 μm; (c) 44 μm; (d), (e), and (f) the high-resolution images of (a), (b), and (c), respectively

    图  7  不同粒度Ti185粉末X射线衍射分析

    Figure  7.  XRD analysis of the Ti185 powders in the different particle sizes

    表  1  等离子旋转电极雾化制备Ti185粉末的化学成分(质量分数)

    Table  1.   Chemical composition of the Ti185 powders prepared by PREP %

    C N H O Fe Al V Ti
    0.015 0.006 0.003 0.120 4.430 1.370 7.970 余量
    下载: 导出CSV
  • [1] Zhao Y Q. Current situation and development trend of titanium alloys. Mater China, 2010, 29(5): 1

    赵永庆. 国内外钛合金研究的发展现状及趋势. 中国材料进展, 2010, 29(5): 1
    [2] Froes F H, Friedrich H, Kiese J, et al. Titanium in the family automobile: The cost challenge. JOM, 2004, 56(2): 40 doi: 10.1007/s11837-004-0144-0
    [3] Wand K. The use of titanium for medical applications in the LSA. Mater Sci Eng A, 1996, 213(1-2): 134 doi: 10.1016/0921-5093(96)10243-4
    [4] Zhang G Q, Liu Y F, Liu N, et al. Progress in powder metallurgy TiAl-based intermetallics. Aeronaut Manuf Technol, 2019, 62(22): 38 doi: 10.16080/j.issn1671-833x.2019.22.038

    张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展. 航空制造技术, 2019, 62(22): 38 doi: 10.16080/j.issn1671-833x.2019.22.038
    [5] Chiaki O. Development of steel plates by intensive use of TMCP and direct quenching processes. ISIJ Int, 2001, 419(6): 542
    [6] Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys. Ohio: ASM International, 1994
    [7] Gao S Y, Liu P, Wang C M, et al. Microstructure and mechanical properties of low-cost Ti‒1Al‒8V‒5Fe alloy using PM method. Powder Metall Technol, 2014, 32(6): 427

    高思宇, 刘平, 王春明, 等. 粉末冶金法低成本制备Ti‒1Al‒8V‒5Fe合金的组织和性能. 粉末冶金技术, 2014, 32(6): 427
    [8] Li Y, Wang L Q, Wang J, et al. Study on microstructure and mechanical properties of Ti‒1Al‒8V‒5Fe alloy. Hot Working Technol, 2019, 48(20): 122

    李烨, 王利卿, 王建, 等. Ti‒1Al‒8V‒5Fe合金的组织和力学性能研究. 热加工工艺, 2019, 48(20): 122
    [9] Zong G S. 3D printing is changing the way we think. Powder Metall Ind, 2015, 25(6): 1 doi: 10.13228/j.boyuan.issn1006-6543.20150095

    宗贵升. 3D打印思维与实践. 粉末冶金工业, 2015, 25(6): 1 doi: 10.13228/j.boyuan.issn1006-6543.20150095
    [10] Devaraj A, Joshi V, Srivastava A, et al. A low-cost hierarchical nanostructures beta-titanium alloy with high strength. Nat Commun, 2016, 7: 11176 doi: 10.1038/ncomms11176
    [11] Moxson V S, Senkov O, Froes F, et al. Production and applications of low cost titanium powder products. Int J Powder Metall, 1998, 34(5): 127
    [12] Sun S J. TiAl alloy parts produced by additive manufacturing method will be used in turbine blade of aircraft engine. Powder Metall Ind, 2015, 25(1): 65

    孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65
    [13] Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251

    杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251
    [14] He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAl pre-alloyed powder by PREP and its densification microstructure research. Rare Met Mater Eng, 2014, 43(11): 2768

    贺卫卫, 汤慧萍, 刘咏, 等. PREP法制备高温TiAl预合金粉末及其致密化坯体组织研究. 稀有金属材料与工程, 2014, 43(11): 2768
    [15] Zhao S Y, Wang L Q, Tan P, et al. Preparation and properties of spherical Ti‒35.8Al‒18.4Nb alloy powders by VIGA-CC method. Powder Metall Technol, 2020, 38(6): 443

    赵少阳, 王利卿, 谈萍, 等. VIGA-CC法制备球形Ti‒35.8Al‒18.4Nb合金粉末及其性能研究. 粉末冶金技术, 2020, 38(6): 443
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  42
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回