钼镧合金表面FeCrAl涂层耐腐蚀性能

席莎 安耿 张晓 周莎 刘仁智 吴吉娜

席莎, 安耿, 张晓, 周莎, 刘仁智, 吴吉娜. 钼镧合金表面FeCrAl涂层耐腐蚀性能[J]. 粉末冶金技术, 2023, 41(1): 90-96. doi: 10.19591/j.cnki.cn11-1974/tf.2021010015
引用本文: 席莎, 安耿, 张晓, 周莎, 刘仁智, 吴吉娜. 钼镧合金表面FeCrAl涂层耐腐蚀性能[J]. 粉末冶金技术, 2023, 41(1): 90-96. doi: 10.19591/j.cnki.cn11-1974/tf.2021010015
XI Sha, AN Geng, ZHANG Xiao, ZHOU Sha, LIU Renzhi, WU Jina. Corrosion resistance of FeCrAl coatings on Mo–La alloys[J]. Powder Metallurgy Technology, 2023, 41(1): 90-96. doi: 10.19591/j.cnki.cn11-1974/tf.2021010015
Citation: XI Sha, AN Geng, ZHANG Xiao, ZHOU Sha, LIU Renzhi, WU Jina. Corrosion resistance of FeCrAl coatings on Mo–La alloys[J]. Powder Metallurgy Technology, 2023, 41(1): 90-96. doi: 10.19591/j.cnki.cn11-1974/tf.2021010015

钼镧合金表面FeCrAl涂层耐腐蚀性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021010015
基金项目: 陕西省科技重大专项资助项目(2020zdzx04-02-01)创新人才推进计划-青年科技新星项目(2022KJXX-06)
详细信息
    通讯作者:

    E-mail: xs19861105@126.com

  • 中图分类号: TG174.43

Corrosion resistance of FeCrAl coatings on Mo–La alloys

More Information
  • 摘要: 采用非平衡磁控溅射工艺在Mo–La合金表面沉积FeCrAl涂层,研究所制备涂层的耐腐蚀性及涂层的腐蚀机理。结果表明:FeCrAl涂层样品在360 ℃、18.6 MPa、纯水的高压釜中腐蚀72 h,平均腐蚀速率为3.8 mg·dm‒2,低于同条件下锆合金以及未沉积涂层的钼镧合金的腐蚀速率,且涂层中的Al与外界环境介质中的氧发生反应,在涂层表面形成致密的Al2O3薄膜,在一定程度上减缓了涂层的腐蚀速度,有效保护了基体材料。FeCrAl涂层样品在1200 ℃、0.1 MPa的高温水蒸气环境下腐蚀8 h,Al2O3氧化膜厚度在4.0 μm左右,涂层维持保护效果,钼镧合金基体未暴露在腐蚀环境中;经淬火后,Al2O3氧化膜厚度减小至2.5 μm左右,涂层依旧维持结构完整性,没有出现贯穿性脱落,满足Mo–La合金表面耐腐蚀性的使用要求。
  • 图  1  沉积FeCrAl涂层前后钼合金棒外观形貌:(a)沉积前;(b)沉积后

    Figure  1.  Appearance photographs of the molybdenum alloy bars before and after FeCrAl coating deposition: (a) before deposition; (b) after deposition

    图  2  高压反应釜外观形貌

    Figure  2.  Appearance photographs of the high-pressure reactor

    图  3  高温水蒸汽腐蚀实验用装置示意图

    Figure  3.  Schematic diagram of the equipment for the high temperature steam corrosion test

    图  4  高压水腐蚀实验中Mo–La合金及锆合金腐蚀速率

    Figure  4.  Corrosion rate of the Mo–La alloys and zirconium alloys in the high pressure water corrosion test

    图  5  FeCrAl涂层高温高压腐蚀前后的X射线衍射图谱

    Figure  5.  XRD patterns of the FeCrAl coatings before and after high temperature and high pressure corrosion

    图  6  FeCrAl涂层高压水腐蚀前后表面形貌:(a)腐蚀前;(b)腐蚀后

    Figure  6.  SEM images of the FeCrAl coatings before and after high pressure water corrosion: (a) before corrosion; (b) after corrosion

    图  7  FeCrAl涂层经高温水蒸汽腐蚀后宏观形貌、微观组织及能谱分析:(a)宏观形貌;(b)微观组织;(c)涂层表面能谱;(d)涂层截面微观组织

    Figure  7.  SEM images and EDS of the FeCrAl coatings after the high temperature water vapor corrosion: (a) macro-morphology; (b) microstructure; (c) EDS of the coating surface; (d) SEM image in the cross section

    图  8  经高温水蒸汽腐蚀FeCrAl涂层X射线衍射图谱

    Figure  8.  XRD patterns of the FeCrAl coatings after the high temperature water vapor corrosion

    图  9  FeCrAl涂层经淬火后宏观形貌、微观组织及能谱分析:(a)宏观形貌;(b)微观形貌;(c)涂层表面能谱;(d)涂层截面微观组织

    Figure  9.  SEM images and EDS of the FeCrAl coatings after quenching: (a) macro-morphology; (b) microstructure; (c) EDS of the coating surface; (d) SEM image in the cross section

    表  1  FeCrAl涂层沉积工艺参数

    Table  1.   Technical parameters of the FeCrAl coating deposition

    靶材功率 / W偏压 / V转速 / (r·min‒1)沉积时间 / h
    Al靶不锈钢靶Cr靶
    1500400020009065
    下载: 导出CSV

    表  2  腐蚀实验参数

    Table  2.   Parameters of the corrosion tests for the molybdenum alloy canning materials

    实验方法温度 / ℃压力 / MPa蒸汽流量 / (g·min‒1)时间 / h
    高压水腐蚀36018.672
    高温水蒸汽腐蚀12000.11.08
    淬火12000.11.08
    下载: 导出CSV
  • [1] Ren Y G. The research and development of the self-brand nuclear fuel. Chin Nucl Power, 2018, 11(1): 46

    任永岗. 我国自主品牌核电燃料元件的研发. 中国核电, 2018, 11(1): 46
    [2] Ji Q. Study on Preparation of FeCrAlY Coating and Corrosion Resistance at High Temperature and Pressure [Dissertation]. Xi'an: Xi'an University of Technology, 2019

    纪奇. FeCrAlY涂层的制备与高温高压抗腐蚀性能研究[学位论文]. 西安: 西安理工大学, 2019
    [3] Cui C P, Gao Y M, Wei S Z, et al. The mechanical properties of the Mo‒0.5Ti and Mo‒0.1Zr alloys at room temperature and high temperature annealing. High Temp Mater Processes, 2017, 36(2): 167
    [4] Hu P, Song R, Li X J, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy. J Alloys Compd, 2017, 708: 367 doi: 10.1016/j.jallcom.2017.03.025
    [5] Deng J, Wang K S, Hu P, et al. Electrochemical behavior and microstructural characterization of lanthanum-doped titanium‒zirconium‒molybdenum alloy. J Alloys Compd, 2018, 763: 687 doi: 10.1016/j.jallcom.2018.05.338
    [6] Bu C Y. Study on Properties of Molybdenum Wire Doped with Si, Al, K [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2014

    卜春阳. 掺杂Si-Al-K高温钼合金丝材性能研究[学位论文]. 西安: 西安建筑科技大学, 2014
    [7] Xia Y Q, Wang D C, Wang J S, et al. Study on high temperature molybdenum alloy doped with rare-earth element. China Molybdenum Ind, 2001, 25(4): 76

    (夏耀勤, 王鼎春, 王敬生, 等. 掺杂稀土元素的高温钼合金的研究. 中国钼业, 2001, 25(4): 76
    [8] Endo M, Kimura K, Udagawa T, et al. Effects of doping molybdenum wire with rare-earth elements. High Temp High Press, 1990, 22(2): 129
    [9] Yang Y C. The recent advanced application of rare earths in non-ferrous metal alloys. Rare Met Mater Eng, 1993, 22(4): 1

    杨遇春. 稀土在有色金属合金中应用的新进展. 稀有金属材料与工程, 1993, 22(4): 1
    [10] An G, Sun J, Sun Y J, et al. Research on microstructure of electron beam welded joints of rare earth-molybdenum alloy. Mater Sci, 2019, 9(10): 947

    安耿, 孙军, 孙院军, 等. 稀土钼合金电子束焊接接头组织研究. 材料科学, 2019, 9(10): 947
    [11] Hu X X, Terrani K A, Wirth B D, et al. Hydrogen permeation in FeCrAl alloys for LWR cladding application. J Nucl Mater, 2015, 461: 282 doi: 10.1016/j.jnucmat.2015.02.040
    [12] Younker I, Fratoni M. Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog Nucl Energy, 2016, 88: 10 doi: 10.1016/j.pnucene.2015.11.006
    [13] Yang H Y, Chen Q S, Zhang R Q, et al. Effect of deposition temperature on microstructure and properties of FeCrAl coatings prepared by magnetron sputtering. Nucl Power Eng, 2020, 41(Suppl 1): 200

    杨红艳, 陈青松, 张瑞谦, 等. 沉积温度对磁控溅射制备FeCrAl涂层微观结构及性能的影响. 核动力工程, 2020, 41(增刊 1): 200
    [14] Xie N P, Gu S Y, Zhang H A. Structure of molybdenum silicide coating prepared on molybdenum substrate by molten salt method. Mater Mech Eng, 2012, 36(1): 65

    谢能平, 古思勇, 张厚安. 采用熔盐法在钼基体上制备硅化钼涂层的结构. 机械工程材料, 2012, 36(1): 65
    [15] Ma X C, Li J W, Wei S Z, et al. Research on the oxidation-resistant coating on the surface of molybdenum electrode in the glass kiln. Rare Met Cement Carb, 2014, 42(5): 51

    马小冲, 李继文, 魏世忠, 等. 玻璃窑炉用钼电极表面抗氧化涂层的研究. 稀有金属与硬质合金, 2014, 42(5): 51
    [16] Tang D Z. Research on the Preparation and Properties of Coating on Molybdenum [Dissertation]. Changsha: Central South University, 2014

    汤德志. 钼合金表面涂层的制备及性能研究[学位论文]. 长沙: 中南大学, 2014
    [17] Chen J, Li W, He D Y, et al. Surface microstructure and high-temperature erosion resistance of FeCrAl coating after high current pulsed electron beam treatment. Surf Technol, 2020, 49(5): 200

    陈军, 李伟, 贺冬云, 等. 强流脉冲电子束表面改性FeCrAl涂层的显微组织及耐高温腐蚀性能研究. 表面技术, 2020, 49(5): 200
    [18] Zhang J L, Hu Y, Tu L M, et al. Corrosion behavior and oxide microstructure of Zr‒1Nb‒xGe alloys corroded in 360 ℃/18.6 MPa deionized water. Corros Sci, 2016, 102: 161
    [19] Badini C, Laurella F. Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism. Surf Coat Technol, 2001, 135(2-3): 291 doi: 10.1016/S0257-8972(00)00989-0
    [20] Deng C P. Study on Formation Mechanism of Porosity and Cracks in Laser Welding of Magnesium Alloy Thin Plates [Dissertation]. Chongqing: Chongqing University, 2010

    邓彩萍. 镁合金薄板激光焊气孔及裂纹形成机理研究[学位论文]. 重庆: 重庆大学, 2010
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  125
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回