球形三氧化钼还原产物形貌

杨秦莉 庄飞 席莎 卜春阳 崔玉青 何凯

杨秦莉, 庄飞, 席莎, 卜春阳, 崔玉青, 何凯. 球形三氧化钼还原产物形貌[J]. 粉末冶金技术, 2021, 39(3): 245-250. doi: 10.19591/j.cnki.cn11-1974/tf.2021020006
引用本文: 杨秦莉, 庄飞, 席莎, 卜春阳, 崔玉青, 何凯. 球形三氧化钼还原产物形貌[J]. 粉末冶金技术, 2021, 39(3): 245-250. doi: 10.19591/j.cnki.cn11-1974/tf.2021020006
YANG Qin-li, ZHUANG Fei, XI Sha, BU Chun-yang, CUI Yu-qing, HE Kai. Reduction product morphology of the spherical molybdenum trioxide[J]. Powder Metallurgy Technology, 2021, 39(3): 245-250. doi: 10.19591/j.cnki.cn11-1974/tf.2021020006
Citation: YANG Qin-li, ZHUANG Fei, XI Sha, BU Chun-yang, CUI Yu-qing, HE Kai. Reduction product morphology of the spherical molybdenum trioxide[J]. Powder Metallurgy Technology, 2021, 39(3): 245-250. doi: 10.19591/j.cnki.cn11-1974/tf.2021020006

球形三氧化钼还原产物形貌

doi: 10.19591/j.cnki.cn11-1974/tf.2021020006
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600)
详细信息
    通讯作者:

    E-mail:489333604@qq.com

  • 中图分类号: TG142.71

Reduction product morphology of the spherical molybdenum trioxide

More Information
  • 摘要: 通过两段氢气还原实验研究球形三氧化钼还原得到MoO2和Mo粉的显微形貌。结果表明:经一段还原后球形三氧化钼(β-MoO3)先变成α-MoO3,再生成立方形的γ-Mo4O11,最后形成α-MoO2;经二段还原得到Mo粉。MoO2形貌受还原温度和还原气氛影响较大,还原温度较低或者在还原气氛中引入水分时,MoO2为松散、细小的不规则形貌;还原温度较高或者还原气氛为大流量的干氢时,MoO2为薄片状,易板结。超细Mo粉的形貌主要受还原温度、水蒸汽分压和氢气分压的影响,还原温度低或者氢气流量较小,应尽量使水蒸汽分压和氢气分压的比值接近平衡常数,可得到大小均匀、分散的超细钼粉。
  • 图  1  原料MoO3粉末透射显微形貌

    Figure  1.  TEM image of the raw MoO3 powders

    图  2  以球形MoO3为原料的不同还原率还原产物X射线衍射图谱

    Figure  2.  XRD patterns of the reduction products in the different reduction ratio using the spherical MoO3 powders ae the raw materials

    图  3  还原率为16%的还原产物显微形貌:(a)γ-Mo4O11;(b)α-Mo4O11

    Figure  3.  SEM images of the reduction products with the reduction rate of 16%: (a) γ-Mo4O11; (b) α-Mo4O11

    图  4  不同还原温度制备的MoO2还原产物扫描电子显微形貌:(a)400 ℃;(b)450 ℃;(c)500 ℃;(d)550 ℃

    Figure  4.  SEM images of the MoO2 reduction products at the different reduction temperatures: (a) 400 ℃; (b) 450 ℃; (c) 500 ℃; (d) 550 ℃

    图  5  不同H2流量条件下制备的MoO2扫描电子显微形貌:(a)0.2 m3·h−1,湿氢;(b)0.2 m3·h−1;(c)1.0 m3·h−1;(d)2.0 m3·h−1

    Figure  5.  SEM images of MoO2 at the different H2 flow rates: (a) 0.2 m3·h−1, wet hydrogen; (b) 0.2 m3·h−1; (c) 1.0 m3·h−1; (d) 2.0 m3·h−1

    图  6  不同还原温度制备的Mo粉显微形貌:(a)700 ℃;(b)750 ℃;(c)850 ℃;(d)950 ℃

    Figure  6.  SEM images of the molybdenum powders at the different reduction temperatures: (a) 700 ℃; (b) 750 ℃; (c) 850 ℃; (d) 950 ℃

    图  7  在850 ℃还原时不同氢气流量得到的Mo粉形貌:(a)0.5 m3·h−1,(湿氢+25 ℃);(b)0.1 m3·h−1;(c)0.5 m3·h−1(干氢−60 ℃);(d)2.0 m3·h−1

    Figure  7.  SEM images of the Mo powders reduced at 850 ℃ with the different H2 flow rates: (a) 0.5 m3·h−1, (wet hydrogen +25 ℃); (b) 0.1 m3·h−1; (c) 0.5 m3·h−1, (dry hydrogen −60 ℃); (d) 2.0 m3·h−1

    表  1  原料MoO3粉末化学成分(质量分数)

    Table  1.   Chemical composition of the raw MoO3 powders %

    MoO3CaAlSiFeSKCCr
    ≥99.500.00150.00080.0080.00480.00260.00290.00890.0011
    下载: 导出CSV
  • [1] Xu K D. Material Science and Engineering of Molybdenum. Beijing: Metallurgical Industry Press, 2014

    徐克玷. 钼的材料科学与工程. 北京: 冶金工业出版社, 2014
    [2] Cui Y Q, Zhou X W, He K. Research on the influence factors of the sublimation rate of molybdenum trioxide. China Molybdenum Ind, 2016, 40(1): 44

    崔玉清, 周新文, 何凯. 影响升华氧化钼升华率的因素研究. 中国钼业, 2016, 40(1): 44
    [3] Zhao L P, Cai X N, Wang H Y, et al. Molybdenum trioxide: A new type negative electrode material for electric energy storage devices using Na+-based organic electrolytes. Chin J Appl Chem, 2017, 34(3): 262 doi: 10.11944/j.issn.1000-0518.2017.03.160239

    赵立平, 蔡兴楠, 王宏宇, 等. 三氧化钼—一种新型有机系钠离子储能器件负极材料. 应用化学, 2017, 34(3): 262 doi: 10.11944/j.issn.1000-0518.2017.03.160239
    [4] Gao B, Zhang X J. Hydrothermal synthesis of single crystalα-MoO3 nanobelts and their formation mechanism. Mater Rev, 2017, 31(2): 112 doi: 10.11896/j.issn.1005-023X.2017.02.024

    高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理. 材料导报, 2017, 31(2): 112 doi: 10.11896/j.issn.1005-023X.2017.02.024
    [5] Deng Y W. Controllable Preparation and Energy Storage Characteristics of Molybdenum Trioxide Nanoribbons [Dissertation]. Changsha: Hunan Normal University, 2020

    邓元文. 三氧化钼纳米带可控制备与储能特性研究[学位论文]. 长沙: 湖南师范大学, 2020
    [6] Qi Y Y. Synthesis, Structure and Properties of One-Dimensional MoO3 Nanomaterials[Dissertation]. Wuhan: Wuhan University of Technology, 2007

    祁琰媛. 一维三氧化钼纳米材料的合成、结构与性能研究[学位论文]. 武汉: 武汉理工大学, 2007
    [7] Wang G, Wang B X, Qu X H, et al. Progress in nano-sized molybdenum oxide preparation with different morphology. Chin J Rare Met, 2012, 36(6): 995 doi: 10.3969/j.issn.0258-7076.2012.06.025

    王戈, 王碧侠, 屈学化, 等. 不同形貌纳米三氧化钼制备研究进展. 稀有金属, 2012, 36(6): 995 doi: 10.3969/j.issn.0258-7076.2012.06.025
    [8] Huang X F, Zou W, Ma C B. Property, use and production of β-type molybdenum trioxide. China Molybdenum Ind, 2000, 24(6): 29

    黄宪法, 邹炜, 马成兵. β型三氧化钼的性质、用途及生产. 中国钼业, 2000, 24(6): 29
    [9] Zhou H, Zhou X W, Li G X, et al. Technological parameters study of MoO2 powder prepared by hydrogen reduction. Powder Metall Technol, 2015, 33(1): 3

    周华, 周新文, 李国新, 等. 氢气还原制备MoO2粉末工艺参数研究. 粉末冶金技术, 2015, 33(1): 3
    [10] Wang L. Preparation of Ultrafine Molybdenum Oxides and the Kinetics Mechanism Studies Reduced by Gases[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    王璐. 超细氧化钼的制备及其气基还原动力学机理研究[学位论文]. 北京: 北京科技大学, 2018
    [11] Liu Q P. Rate control of MoO3–MoO2 in the hydrogen reduction process. China Tungsten Ind, 2012, 27(5): 25

    刘秋萍. MoO3–MoO2氢还原过程中的速率控制. 中国钨业, 2012, 27(5): 25
    [12] Liu Q P, Bai Y, Yi S F, et al. The effect of hydrogen dew point on the properties of molybdenum dioxide and molybdenum powder. China Tungsten Ind, 2018, 33(2): 42 doi: 10.3969/j.issn.1009-0622.2018.02.008

    刘秋萍, 白阳, 弋社峰, 等. 氢气露点对二氧化钼和钼粉性能的影响. 中国钨业, 2018, 33(2): 42 doi: 10.3969/j.issn.1009-0622.2018.02.008
    [13] Zeng Y, Fu X J, Wang N, et al. Influence factors of oxygen content in small-particle molybdenum powder. Foundry Technol, 2015, 36(7): 1672

    曾毅, 付小俊, 王娜, 等. 小粒度钼粉氧含量的影响因素研究. 铸造技术, 2015, 36(7): 1672
    [14] Li G Z, Wei X Y, Fu C W. Morphology evolution during production process of molybdenum powders. China Molybdenum Ind, 2017, 41(3): 52

    李光宗, 魏修宇, 傅崇伟. 钼粉制粉过程中的粉体形貌演变. 中国钼业, 2017, 41(3): 52
    [15] Bolitschek J, Luidold S, O'Sullivan M. A study of the impact of reduction conditions on molybdenum morphology. Int J Refract Met Hard Mater, 2018, 71: 325 doi: 10.1016/j.ijrmhm.2017.11.037
    [16] Du F J, Wang L, Yu Y. Hydrogen reduction processes of MoO2 to metal Mo with change of temperature. Chin J Rare Met, 2020, 44(11): 1201

    杜风娇, 王璐, 余岳. 温度对氢气还原二氧化钼制备钼粉的影响. 稀有金属, 2020, 44(11): 1201
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  742
  • HTML全文浏览量:  166
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回