热等静压烧结温度对Mo–Na合金性能影响

王娜 朱琦 周莎 席莎 武洲 吴吉娜 张晓 刘仁智 崔玉青 王锦

王娜, 朱琦, 周莎, 席莎, 武洲, 吴吉娜, 张晓, 刘仁智, 崔玉青, 王锦. 热等静压烧结温度对Mo–Na合金性能影响[J]. 粉末冶金技术, 2022, 40(4): 356-361. doi: 10.19591/j.cnki.cn11-1974/tf.2021020007
引用本文: 王娜, 朱琦, 周莎, 席莎, 武洲, 吴吉娜, 张晓, 刘仁智, 崔玉青, 王锦. 热等静压烧结温度对Mo–Na合金性能影响[J]. 粉末冶金技术, 2022, 40(4): 356-361. doi: 10.19591/j.cnki.cn11-1974/tf.2021020007
WANG Na, ZHU Qi, ZHOU Sha, XI Sha, WU Zhou, WU Ji-na, ZHANG Xiao, LIU Ren-zhi, CUI Yu-qing, WANG Jin. Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys[J]. Powder Metallurgy Technology, 2022, 40(4): 356-361. doi: 10.19591/j.cnki.cn11-1974/tf.2021020007
Citation: WANG Na, ZHU Qi, ZHOU Sha, XI Sha, WU Zhou, WU Ji-na, ZHANG Xiao, LIU Ren-zhi, CUI Yu-qing, WANG Jin. Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys[J]. Powder Metallurgy Technology, 2022, 40(4): 356-361. doi: 10.19591/j.cnki.cn11-1974/tf.2021020007

热等静压烧结温度对Mo–Na合金性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021020007
基金项目: 陕西省重点研发计划资助项目(2020ZDLGY12-07)
详细信息
    通讯作者:

    E-mail: biyewangna@163.com

  • 中图分类号: TG146.4

Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys

More Information
  • 摘要: 采用热等静压烧结法制备Mo–Na合金,研究了热等静压烧结温度对Mo–Na合金显微组织、硬度、密度及Na质量分数的影响,分析了Mo–Na合金热等静压烧结的致密化过程。结果表明:采用热等静压烧结法制备的Mo–Na合金显微组织细小均匀,平均晶粒尺寸在10 μm以下。随着热等静压烧结温度的升高,相对密度及硬度随之升高,在1100 ℃时达到最大,分别为99.58%和HRA 54.50,热等静压过程中液相的形成对Mo–Na合金的致密化起到了重要作用。热等静压过程很好地避免了低熔点Na金属高温烧结过程中的挥发,在1100 ℃烧结后Na质量分数基本无变化。
  • 图  1  不同烧结温度下Mo–Na合金的相对密度

    Figure  1.  Relative density of the Mo–Na allys at different sintering temperatures

    图  2  不同温度热等静压烧结样品金相组织:(a)700 ℃;(b)800 ℃;(c)900 ℃;(d)1000 ℃;(e)1100 ℃;(f)1200 ℃

    Figure  2.  Microstructure of the hot isostatic pressing sintered samples at different temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃; (d) 1000 ℃; (e) 1100 ℃ ; (f) 1200 ℃

    图  3  不同温度热等静压烧结样品断口显微形貌:(a)700 ℃;(b)800 ℃;(c)900 ℃;(d)1000 ℃;(e)1100 ℃;(f)1200 ℃

    Figure  3.  Fracture morphology of the hot isostatic pressing sintered samples at different temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃; (d) 1000 ℃; (e) 1100 ℃; (f) 1200 ℃

    图  4  Mo–Na合金的硬度及Na质量分数随温度的变化曲线

    Figure  4.  Hardness and Na mass fraction of the Mo–Na allys at different temperatures

    表  1  不同烧结工艺条件下Mo–Na合金化学成分(质量分数)

    Table  1.   Chemical composition of the Mo–Na alloys in different sintering conditions %

    状态OCFeNiMgSiAlK
    粉末态0.1500.00220.00160.00100.00060.00100.00030.0032
    700 ℃热等静压烧结0.1300.00240.00200.00080.00060.00110.00030.0030
    800 ℃热等静压烧结0.1390.00260.00210.00080.00060.00100.00030.0028
    900 ℃热等静压烧结0.1390.00220.00230.00100.00060.00110.00030.0030
    1000 ℃热等静压烧结0.1390.00270.00200.00100.00060.00100.00030.0032
    1100 ℃热等静压烧结0.1390.00240.00180.00100.00060.00110.00030.0028
    1200 ℃热等静压烧结0.1390.00230.00180.00100.00060.00110.00030.0027
    1100 ℃真空热压烧结0.1800.00210.00180.00100.00060.00100.00030.0028
    下载: 导出CSV
  • [1] Liu X J, Wang L, Wang H Q, et al. New progress in CIGS thin film solar cells. Electron Process Technol, 2013, 34(5): 258

    刘晓剑, 王玲, 王宏芹, 等. CIGS薄膜太阳能电池研究新进展. 电子工艺技术, 2013, 34(5): 258
    [2] Cheng S Q, Zhang K Z, Zhang Y X, et al. Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells. Sol Energy Mater Sol Cells, 2021, 222: 110917 doi: 10.1016/j.solmat.2020.110917
    [3] Blösch P, Nishiwakia S, Chirilă A, et al. Sodium-doped molybdenum back contacts for flexible Cu(In, Ga)Se2 solar cells. Thin Solid Films, 2013, 535: 214 doi: 10.1016/j.tsf.2012.10.080
    [4] Peng S, Wang Y, Wang W. Most promising CIGS thin film solar cell. World Build Mater, 2010, 31(4): 1 doi: 10.3963/j.issn.1674-6066.2010.04.001

    彭寿, 王芸, 王伟. 最具发展前景的CIGS薄膜太阳能电池. 建材世界, 2010, 31(4): 1 doi: 10.3963/j.issn.1674-6066.2010.04.001
    [5] Wang Z A. Studies and Preparation of Absorb Layer for CIGS Thin Film Solar Cells [Dissertation]. Shanghai: East China Normal University, 2010

    王正安. 铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备[学位论文]. 上海: 华东师范大学, 2010
    [6] Zhu Q, Chen L B, Wang N, et al. Preparation of Mo–Na targets by vacuum hot pressing technique. China Molybdenum Ind, 2015, 39(6): 55

    朱琦, 陈良斌, 王娜, 等. 真空热压烧结制备Mo–Na合金靶材的研究. 中国钼业, 2015, 39(6): 55
    [7] Kim S C, Park H, Lee E W, et al. Role of Na in reaction pathways and kinetics of CuInSe2 formation from stacked binary precursors. Thin Solid Films, 2011, 519(21): 7250 doi: 10.1016/j.tsf.2010.12.222
    [8] Rudmann D, Brémaud D, da Cunha A F, et al. Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 2005, 480-481: 55 doi: 10.1016/j.tsf.2004.11.071
    [9] Shin Y M, Shin D H, Kim J H, et al. Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells. Curr Appl Phys, 2011, 11(Suppl 1): S59
    [10] Wang B, Liu P, Li W, et al. Progress in research of CIGS thin film solar cells. Mater Rev, 2011, 25(10): 54

    王波, 刘平, 李伟, 等. 铜铟镓硒(CIGS)薄膜太阳能电池的研究进展. 材料导报, 2011, 25(10): 54
    [11] Guan M X. Application of hot isostatic presses in power metallurgy. Tianjin Metall, 2001(5): 40 doi: 10.3969/j.issn.1006-110X.2001.05.014

    关明鑫. 热等静压在粉末冶金中的应用. 天津冶金, 2001(5): 40 doi: 10.3969/j.issn.1006-110X.2001.05.014
    [12] Shen Q M, Yang J, Shan X Y, et al. Development and application of HIP technology. Rare Met Cement Carb, 2003, 31(2): 33 doi: 10.3969/j.issn.1004-0536.2003.02.010

    谌启明, 杨靖, 单先裕, 等. 热等静压技术的发展及应用. 稀有金属与硬质合金, 2003, 31(2): 33 doi: 10.3969/j.issn.1004-0536.2003.02.010
    [13] Lin X H, Li L P, Li B, et al. Application of hot isostatic pressing in preparation of rare and refractory metal products. Powder Metall Ind, 2017, 27(3): 63

    林小辉, 李来平, 李斌, 等. 热等静压在稀有难熔金属产品制备中的应用. 粉末冶金工业, 2017, 27(3): 63
    [14] Han F L. The PM HIP parts process and design guidelines. Powder Metall Technol, 2016, 34(1): 62 doi: 10.3969/j.issn.1001-3784.2016.01.012

    韩凤麟. 粉末冶金/热等静压(PM HIP)零件的生产工艺与设计准则. 粉末冶金技术, 2016, 34(1): 62 doi: 10.3969/j.issn.1001-3784.2016.01.012
    [15] Williams B. Recent trends in hot isostatic pressing (HIP): processing and applications. Transl by Han F L. Powder Metall Technol, 2014, 32(6): 464

    Williams B. 近年来热等静压(HIP)处理与应用发展趋势. 韩凤麟, 译. 粉末冶金技术, 2014, 32(6): 464
    [16] Wang X F, He W W, Zhu J L, et al. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing. Powder Metall Technol, 2020, 38(5): 371

    王新锋, 贺卫卫, 朱纪磊, 等. 热等静压铁钴镍基高温合金的显微组织和力学性能. 粉末冶金技术, 2020, 38(5): 371
    [17] Guo Z J, Lin Y, Wang W M, et al. Effect of HIP on physicomechanical properties of molybdenum. Ordnance Mater Sci Eng, 2002, 25(4): 22 doi: 10.3969/j.issn.1004-244X.2002.04.006

    郭志俊, 林勇, 王文明, 等. 热等静压工艺对金属钼力学性能的影响. 兵器材料科学与工程, 2002, 25(4): 22 doi: 10.3969/j.issn.1004-244X.2002.04.006
    [18] Wang N, Zhu Q, Zeng Y, et al. Study on the phase transition of Mo–Na alloy during sintering process. China Molybdenum Ind, 2016, 40(3): 53

    王娜, 朱琦, 曾毅, 等. Mo–Na合金烧结过程中的物相演变. 中国钼业, 2016, 40(3): 53
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  145
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回